Journal of Materials Science

, Volume 53, Issue 7, pp 5467–5476 | Cite as

Poly(NIPAAm-co-Ru(bpy) 3 2+ ) hydrogels crosslinked by double-bond end-capped Pluronic F127: preparation, properties and coupling with the BZ reaction

  • Hongwei ZhouEmail author
  • Bo Yan
  • Jie Li
  • Hanbin Liu
  • Qiang Wang
  • Xiaobin Ding
  • Xilang JinEmail author
  • Aijie Ma
  • Weixing Chen
  • Jingjing Yang
  • Chunyan Luo
  • Gai Zhang
  • Weifeng Zhao


Topological network design is an effective way to obtain new functionalities and regulate the properties of stimuli responsive hydrogels. In this work, poly(NIPAAm-co-Ru(bpy) 3 2+ ) hydrogels (NIPAAm: N-isopropylacrylamide, Ru(bpy) 3 2+ : Ruthenium bipyridine complex monomer) crosslinked by amphiphilic triblock copolymers were designed and constructed by a photo-induced gelation method, utilizing double-bond end-capped Pluronic F127 (F127DA) as the crosslinking agent, NIPAAm and Ru(bpy) 3 2+ as the monomers, α-ketoglutaric acid as the photoinitiator and H2O as the solvent. The resulting F127DA crosslinked hydrogels exhibit unique swelling behaviors, mechanical properties, fluorescent behaviors and thermosensitive properties and can be coupled with the BZ reaction. The present example may enrich the family of metal-containing polymer materials and provide clues to develop other functional hydrogels by designing topologically crosslinked network.



This work was supported by the National Natural Science Foundation of China (Nos. 51603164, 51373175, 61604120), the Natural Science Basic Research Plan in Shaanxi Province of China (Nos. 2016JQ5036, No. 2017ZDJC-22), the Young Talent Fund of University Association for Science and Technology in Shaanxi, China (20170706), and the Start-up Funding for Scientific Research in Xi’an Technological University (Nos. 0853-302020350).

Supplementary material

10853_2017_1929_MOESM1_ESM.avi (5.4 mb)
Supplementary material 1 (AVI 5545 kb)

Supplementary material 2 (AVI 2118 kb)


  1. 1.
    Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep 93:1–49CrossRefGoogle Scholar
  2. 2.
    Raeburn J, Zamith Cardoso A, Adams DJ (2013) The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev 42:5143–5156CrossRefGoogle Scholar
  3. 3.
    Kim J, Yoon J, Hayward RC (2010) Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat Mater 9:159–164CrossRefGoogle Scholar
  4. 4.
    Razza N, Blanchet B, Lamberti A, Pirri FC, Tulliani JM, Bozano LD, Sangermano M (2017) UV-printable and flexible humidity sensors based on conducting/insulating semi-interpenetrated polymer networks. Macromol Mater Eng 10:1700161CrossRefGoogle Scholar
  5. 5.
    Liu YJ, Cao WT, Ma MG, Wan P (2017) Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl Mater Inter 9:25559–25570CrossRefGoogle Scholar
  6. 6.
    Liu S, Li L (2017) Ultra-stretchable and self-healing double network hydrogel for 3D printing and strain sensor. ACS Appl Mater Inter 9:26429–26437CrossRefGoogle Scholar
  7. 7.
    Gao Y, Song JF, Li SM, Elowsky C, Zhou Y, Ducharme S, Chen YM, Zhou Q, Tan L (2016) Hydrogel microphones for stealthy underwater listening. Nat Commun. Google Scholar
  8. 8.
    Trung TQ, Lee N (2017) Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv Mater 29:1603167CrossRefGoogle Scholar
  9. 9.
    Chen H, Yang F, Chen Q, Zheng J (2017) A novel design of multi-mechanoresponsive and mechanically strong hydrogels. Adv Mater 21:1606900CrossRefGoogle Scholar
  10. 10.
    Stuart MA, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113CrossRefGoogle Scholar
  11. 11.
    Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590CrossRefGoogle Scholar
  12. 12.
    Yashin VV, Kuksenok O, Balazs AC (2010) Modeling autonomously oscillating chemo-responsive gels. Prog Polym Sci 35:155–173CrossRefGoogle Scholar
  13. 13.
    Zhou H, Ding X, Zheng Z, Peng Y (2013) Self-regulated intelligent systems: where adaptive entities meet chemical oscillators. Soft Matter 9:4956–4968CrossRefGoogle Scholar
  14. 14.
    Yoshida R (2010) Self-oscillating gels driven by the Belousov–Zhabotinsky reaction as novel smart materials. Adv Mater 22:3463–3483CrossRefGoogle Scholar
  15. 15.
    Kuksenok O, Dayal P, Bhattacharya A, Yashin VV, Deb D, Chen IC, Van Vliet KJ, Balazs AC (2013) Chemo-responsive, self-oscillating gels that undergo biomimetic communication. Chem Soc Rev 42:7257–7277CrossRefGoogle Scholar
  16. 16.
    Zhou HW, Zheng ZH, Wang QG, Xu GH, Li J, Ding XB (2015) A modular approach to self-oscillating polymer systems driven by the Belousov–Zhabotinsky reaction. RSC Adv 5:13555–13569CrossRefGoogle Scholar
  17. 17.
    Yoshida R, Ueki T (2014) Evolution of self-oscillating polymer gels as autonomous polymer systems. NPG Asia Mater. Google Scholar
  18. 18.
    Yoshida R, Takahashi T, Yamaguchi T, Ichijo H (1996) Self-oscillating gel. J Am Chem Soc 118:5134–5135CrossRefGoogle Scholar
  19. 19.
    Zhou HW, Ding XB (2016) Smart polymer materials driven by the Belousov–Zhabotinsky reaction: topological structures and biomimetic functions. Prog Chem 28:111–120Google Scholar
  20. 20.
    Ueki T, Yoshida R (2014) Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science. Phys Chem Chem Phys 16:10388–10397CrossRefGoogle Scholar
  21. 21.
    Suzuki D, Kobayashi T, Yoshida R, Hirai T (2012) Soft actuators of organized self-oscillating microgels. Soft Matter 8:11447–11449CrossRefGoogle Scholar
  22. 22.
    Mitsunaga R, Okeyoshi K, Yoshida R (2013) Design of a comb-type self-oscillating gel. Chem Commun 49:4935–4937CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Zhou N, Akella S, Kuang Y, Kim D, Schwartz A, Bezpalko M, Foxman BM, Fraden S, Epstein IR, Xu DB (2013) Active cross-linkers that lead to active gels. Angew Chem Int Ed 52:11494–11498CrossRefGoogle Scholar
  24. 24.
    Zhou HW, Wang YR, Zheng ZH, Ding XB, Peng YX (2014) Periodic auto-active gels with topologically “polyrotaxane-interlocked’’ structures. Chem Commun 50:6372–6374CrossRefGoogle Scholar
  25. 25.
    Zhou H, Jin X, Yan B, Li X, Yang W, Ma A, Zhang X, Li P, Ding X, Chen W (2017) Mechanically robust, tough, and self-recoverable hydrogels with molecularly engineered fully flexible crosslinking structure. Macromol Mater Eng 9:1700085CrossRefGoogle Scholar
  26. 26.
    Lodge TP, Ueki T (2016) Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids. Acc Chem Res 49:2107–2114CrossRefGoogle Scholar
  27. 27.
    Zhang Y, Zhou N, Li N, Sun MG, Kim D, Fraden S, Epstein IR, Xu B (2014) Giant volume change of active gels under continuous flow. J Am Chem Soc 136:7341–7347CrossRefGoogle Scholar
  28. 28.
    Sun YN, Gao GR, Du GL, Cheng YJ, Fu J (2014) Super tough, ultrastretchable, and thermoresponsive hydrogels with functionalized triblock copolymer micelles as macro-cross-linkers. ACS Macro Lett 3:496–500CrossRefGoogle Scholar
  29. 29.
    Zhou HW, Yang Y, Xu GH, Chen WX, Zhang WZ, Wang QG, Zheng ZH, Ding XB (2015) Ru(II)(Tpy)2-functionalized hydrogels: synthesis, reversible responsiveness, and coupling with the Belousov–Zhabotinsky reaction. J Polym Sci Pol Chem 53:2214–2222CrossRefGoogle Scholar
  30. 30.
    Zhou H, Zheng Z, Wang Q, Xu G, Li J, Ding X (2015) A modular approach to self-oscillating polymer systems driven by the Belousov–Zhabotinsky reaction. RSC Adv 5:13555–13569CrossRefGoogle Scholar
  31. 31.
    Manners I (2001) Putting metals into polymers. Science 294:1664–1666CrossRefGoogle Scholar
  32. 32.
    Li H, Yang P, Pageni P, Tang CB (2017) Recent advances in metal-containing polymer hydrogels. Macromol Rapid Commun 14:1700109CrossRefGoogle Scholar
  33. 33.
    Gao J, Tang C, Smith AM, Miller AF, Saiani A (2017) Controlling self-assembling peptide hydrogel properties through network topology. Biomacromol 18:826–834CrossRefGoogle Scholar
  34. 34.
    Shen W, Zhang K, Kornfield JA, Tirrell DA (2006) Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat Mater 5:153–158CrossRefGoogle Scholar
  35. 35.
    Okumura Y, Ito K (2001) The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater 13:485–487CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Hongwei Zhou
    • 1
    Email author
  • Bo Yan
    • 1
  • Jie Li
    • 2
  • Hanbin Liu
    • 3
  • Qiang Wang
    • 1
  • Xiaobin Ding
    • 2
  • Xilang Jin
    • 1
    Email author
  • Aijie Ma
    • 1
  • Weixing Chen
    • 1
  • Jingjing Yang
    • 1
  • Chunyan Luo
    • 1
  • Gai Zhang
    • 1
  • Weifeng Zhao
    • 1
  1. 1.School of Materials and Chemical EngineeringXi’an Technological UniversityXi’anPeople’s Republic of China
  2. 2.Chengdu Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChengduPeople’s Republic of China
  3. 3.School of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations