Journal of Materials Science

, Volume 53, Issue 7, pp 4806–4813 | Cite as

Temperature-dependent space-charge-limited conduction in BaTiO3 heterojunctions

  • Pooja Singh
  • P. K. Rout
  • Himanshu Pandey
  • Anjana Dogra


We have investigated the space-charge-limited conduction (SCLC) in two different metal–insulator–metal junctions of the form: Au/BaTiO3 (BTO)/Nb:SrTiO3 (Nb:STO) and Au/BTO/La0.67Ca0.33MnO3 (LCMO) at various temperatures. The SCLC model has been employed to determine various parameters relevant to the charge conduction in these systems. While the trap density increases with decreasing temperature, the ratio of free to trapped carriers (θ) reduces for both the junctions, which can be understood as the thermally activated process. The extracted activation energies of 0.071 eV for Au/BTO/Nb:STO and 0.154 eV for Au/BTO/LCMO indicate the presence of shallow trap level. Moreover, the Fermi level at thermal equilibrium approaches the intrinsic limit with increasing temperature. Comparing both the junctions, we observe lower θ and deeper trap level in BTO/LCMO junction.



PS acknowledges Department of Science and Technology, Govt. of India, for financial assistance under Project No IR/S2/PU-003/2010 (G). PS also acknowledge Dr. Anurag Gupta for continuous guidance and support in the research work.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

Supplementary material

10853_2017_1916_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)


  1. 1.
    Scott JF (2007) Applications of modern ferroelectrics. Science 315:954CrossRefGoogle Scholar
  2. 2.
    Jeong DS, Thomas R, Katiyar RS, Scott JF, Kohlstedt H, Petraru A, Hwang CS (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502CrossRefGoogle Scholar
  3. 3.
    Wang C, Kryder MH (2008) Epitaxial growth and resistive switching properties of BaTiO3 on (001) Si by RF sputtering. J Phys D Appl Phys 41:245301CrossRefGoogle Scholar
  4. 4.
    Yang SY, Martin LW, Byrnes SJ, Conry TE, Basu SR, Paran D, Reichertz L, Ihlefeld J, Adamo C, Melville A, Chu YH, Yang CH, Musfeldt JL, Schlom DG, Ager JW III, Ramesh R (2009) Photovoltaic effects in BiFeO3. Appl Phys Lett 95:062909CrossRefGoogle Scholar
  5. 5.
    Yang H, Jain M, Suvorova NA, Zhou H, Luo HM, Feldmann DM, Dowden PC, DePaula RF, Foltyn SR, Jia QX (2007) Temperature-dependent leakage mechanisms of Pt/BiFeO3/SrRuO3 thin film capacitors. Appl Phys Lett 91:072911CrossRefGoogle Scholar
  6. 6.
    Won CJ, Park YA, Lee KD, Ryu HY, Hur N (2011) Diode and photocurrent effect in ferroelectric BaTiO3−δ. J Appl Phys 109:084108CrossRefGoogle Scholar
  7. 7.
    Chen X, Jia CH, Chen YH, Yang G, Zhang WF (2014) Ferroelectric memristive effect in BaTiO3 epitaxial thin films. J Phys D Appl Phys 47:365102CrossRefGoogle Scholar
  8. 8.
    Chanthbouala A, Garcia V, Cherifi RO, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur ND, Bibes M, Barthelemy A, Grollier J (2012) A ferroelectric memristor. Nat Mater 11:860CrossRefGoogle Scholar
  9. 9.
    Yin YW, Burton JD, Kim YM, Borisevich AY, Pennycook SJ, Yang SM, Noh TW, Gruverman A, Li XG, TsymbalEY Li Q (2013) Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nat Mater 12:397CrossRefGoogle Scholar
  10. 10.
    Wen Z, Li C, Wu D, Li A, Ming N (2013) Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junctions. Nat Mater 12:617CrossRefGoogle Scholar
  11. 11.
    Li C, Huang L, Li T, Lü W, Qiu X, Huang Z, Liu Z, Zeng S, Guo R, Zhao Y, Zeng K, Coey M, Chen J, Ariando Venkatesan T (2015) Ultrathin BaTiO3-based ferroelectric tunnel junctions through interface engineering. Nano Lett 15:2568CrossRefGoogle Scholar
  12. 12.
    Pan RK, Zhang TJ, Wang JY, Wang JZ, Wang DF, Duan MG (2012) Mechanisms of current conduction in Pt/BaTiO3/Pt resistive switching cell. Thin Solid Films 520:4016CrossRefGoogle Scholar
  13. 13.
    Pan W, Han R, Chi X, Liu Q, Wang J (2013) Ferromagnetic Fe3O4 nanofibers: Electrospinning synthesis and characterization. J Alloys Compd 577:192CrossRefGoogle Scholar
  14. 14.
    Boni AG, Pintilie I, Pintilie L, Preziosi D, Deniz H, Alexe M (2013) Electronic transport in (La, Sr) MnO3-ferroelectric-(La, Sr) MnO3 epitaxial structures. J Appl Phys 113:224103CrossRefGoogle Scholar
  15. 15.
    Singh P, Rout PK, Singh Manju, Rakshit RK, Dogra A (2015) Thickness dependent charge transport in ferroelectric BaTiO3 heterojunctions. J Appl Phys 118:114103CrossRefGoogle Scholar
  16. 16.
    Singh P, Rout PK, Singh M et al (2017) Ferroelectric memory resistive behavior in BaTiO3/Nb doped SrTiO3 heterojunctions. Thin Solid Films. Google Scholar
  17. 17.
    Okatan MB, Misirlioglu IB, Alpay SP (2010) Contribution of space charges to the polarization of ferroelectric superlattices and its effect on dielectric properties. Phys Rev B: Condens Matter Mater Phys 82:094115CrossRefGoogle Scholar
  18. 18.
    Misirlioglu IB, Okatan MB, Alpay SP (2010) Asymmetric hysteresis loops and smearing of the dielectric anomaly at the transition temperature due to space charges in ferroelectric thin films. J Appl Phys 108:034105CrossRefGoogle Scholar
  19. 19.
    Liu Z, Yang B, Cao W et al (2017) Enhanced energy storage with polar vortices in ferroelectric nanocomposites. Phys Rev B 8:034014Google Scholar
  20. 20.
    Hlinka J, Železný V, Nakhmanson SM et al (2010) Soft-mode spectroscopy of epitaxial BaTiO3/SrTiO3 superlattices. Phys Rev B 82:224102CrossRefGoogle Scholar
  21. 21.
    Benguigui L (1969) Space charge limited currents in BaTiO3 single crystals. Solid State Commun 7:1245CrossRefGoogle Scholar
  22. 22.
    Osak W, Tkacz K (1989) Investigation of IV characteristics in polycrystalline BaTiO3. J Phys D Appl Phys 22:1746CrossRefGoogle Scholar
  23. 23.
    Kamel FE, Gonon P, Radnóczi G (2009) Electrical properties of Cu/a-BaTiO3/Cu capacitors studied in dc and ac regimes. J Appl Phys 105:074104CrossRefGoogle Scholar
  24. 24.
    Juan TP, Chen SM, Lee JYM (2004) Temperature dependence of the current conduction mechanisms in ferroelectric Pb (Zr0.53, Ti0.47)O3 thin films. J Appl Phys 95:3120CrossRefGoogle Scholar
  25. 25.
    Liu X, Wang Y, Burton JD, Tsymbal EY (2013) Polarization-controlled Ohmic to Schottky transition at a metal/ferroelectric interface. Phys Rev B: Condens Matter Mater Phys 88:165139CrossRefGoogle Scholar
  26. 26.
    Stengel M, Aguado-Puente P, Spaldin NA, Junquera J (2011) Band alignment at metal/ferroelectric interfaces: insights and artifacts from first principles. Phys Rev B: Condens Matter Mater Phys 83:235112CrossRefGoogle Scholar
  27. 27.
    Chiu FC (2014) A review on conduction mechanisms in dielectric films. Adv Mater Sci Eng 2014:578168Google Scholar
  28. 28.
    Lampert MA, Mark P (1970) Current injection in solids. Academic, New YorkGoogle Scholar
  29. 29.
    Matthias B, Hippel AV (1948) Domain structure and dielectric response of barium titanate single crystals. Phys Rev 73:1378CrossRefGoogle Scholar
  30. 30.
    Berglund CN, Baer WS (1967) Electron transport in single-domain, ferroelectric barium titanate. Phys Rev 157:358CrossRefGoogle Scholar
  31. 31.
    Chiu FC, Chou HW, Lee JY (2005) Electrical conduction mechanisms of metal/La2O3/Si structure. J Appl Phys 97:103503CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia
  2. 2.National Physical LaboratoryCouncil of Scientific and Industrial ResearchNew DelhiIndia
  3. 3.Department of Physics and Materials Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations