Journal of Materials Science

, Volume 53, Issue 7, pp 5103–5113 | Cite as

Theoretical study of phosphorene multilayers: optical properties and small organic molecule physisorption

  • Diego A. Ospina
  • Carlos A. Duque
  • Miguel E. Mora-Ramos
  • Julian D. Correa


Phosphorene is an emerging 2D-like material with direct energy band. In this work we report the results of a theoretical study on the electronic structure of phosphorene multilayers. A particular emphasis is put on the investigation of the optical absorption and the functionalization of phosphorene layers with organic molecules such as benzene and fullerene. The investigation is carried out employing the density functional theory, and the effect of using different exchange-correlation functionals for the interlayer van der Waals interaction is discussed. Fundamental quantities like lattice constants, interlayer distance and energy band gap are reported in phosphorene monolayers, bilayers and trilayers. The features of the interband optical absorption are studied from the calculated imaginary part of the dielectric function. The results of the numerical simulation of the phenomenon of the small organic molecule physisorption onto phosphorene indicate that the direct band gap is preserved. In the case of the fullerene physisorption, a deformation in the phosphorene monolayer is induced, leading to a shift of the associated band structure. It is shown that such a modification depends on the particular exchange-correlation functional employed. In the case of benzene physisorption, the electronic structure of the phosphorene remains unchanged and is independent of the position of the benzene molecule. This suggests that benzene would be a good candidate for a molecular coating of phosphorene to shield it against oxidation under ambient conditions.



JDC acknowledge support from the Universidad de Medellín Research Office. MEMR is grateful to Universidad de Medellín for hospitality during research visits.


  1. 1.
    Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425CrossRefGoogle Scholar
  2. 2.
    Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126CrossRefGoogle Scholar
  3. 3.
    Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, Gutiérrez HR, Heinz TF, Hong SS, Huang J, Ismach AF, Johnston-Halperin E, Kuno M, Plashnitsa VV, Robinson RD, Ruoff RS, Salahuddin S, Shan J, Shi L, Spencer MG, Terrones M, Windl W, Goldberger JE (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4):2898–2926CrossRefGoogle Scholar
  4. 4.
    Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113(5):3766–3798CrossRefGoogle Scholar
  5. 5.
    Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A, Vitiello MS (2015) Black phosphorus terahertz photodetectors. Adv Mater 27(37):5567–5572CrossRefGoogle Scholar
  6. 6.
    Viti L, Hu J, Coquillat D, Politano A, Consejo C, Knap W, Vitiello MS (2016) Heterostructured hbn-bp-hbn nanodetectors at terahertz frequencies. Adv Mater 28(34):7390–7396CrossRefGoogle Scholar
  7. 7.
    Viti L, Hu J, Coquillat D, Politano A, Knap W, Vitiello MS (2016) Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Sci Rep 6(20):474Google Scholar
  8. 8.
    Viti L, Politano A, Vitiello MS (2017) Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges. APL Mater 5(3):035602CrossRefGoogle Scholar
  9. 9.
    Mitrofanov O, Viti L, Dardanis E, Giordano MC, Ercolani D, Politano A, Sorba L, Vitiello MS (2017) Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging. Sci Rep 7:44240CrossRefGoogle Scholar
  10. 10.
    Ren X, Lian P, Xie D, Yang Y, Mei Y, Huang X, Wang Z, Yin X (2017) Properties, preparation and application of black phosphorus/phosphorene for energy storage: a review. J Mater Sci 52(17):10364–10386CrossRefGoogle Scholar
  11. 11.
    Kou L, Chen C, Smith SC (2015) Phosphorene: fabrication, properties, and applications. J Phys Chem Lett 6(14):2794–2805CrossRefGoogle Scholar
  12. 12.
    Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) Phosphorene: an unexplored 2d semiconductor with a high hole mobility. ACS Nano 8(4):4033–4041CrossRefGoogle Scholar
  13. 13.
    Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9(5):372–377CrossRefGoogle Scholar
  14. 14.
    Hu T, Hong J (2015) First-principles study of metal adatom adsorption on black phosphorene. J Phys Chem C 119(15):8199–8207CrossRefGoogle Scholar
  15. 15.
    Hu W, Yang J (2014) Defect in phosphorene. J Phys Chem C 119(35):20474–20480CrossRefGoogle Scholar
  16. 16.
    Pereira JM, Katsnelson MI (2015) Landau levels of single-layer and bilayer phosphorene. Phys Rev B 92(7):075437CrossRefGoogle Scholar
  17. 17.
    Cai Y, Zhang G, Zhang YW (2015) Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. J Phys Chem C 119(24):13929–13936CrossRefGoogle Scholar
  18. 18.
    Cai Y, Ke Q, Zhang G, Zhang YW (2015) Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J Phys Chem C 119(6):3102–3110CrossRefGoogle Scholar
  19. 19.
    Zhang R, Li B, Yang J (2015) A first-principles study on electron donor and acceptor molecules adsorbed on phosphorene. J Phys Chem C 119(5):2871–2878CrossRefGoogle Scholar
  20. 20.
    Wang V, Kawazoe Y, Geng WT (2015) Native point defects in few-layer phosphorene. Phys Rev B 91(4):045433CrossRefGoogle Scholar
  21. 21.
    Ziletti A, Carvalho A, Trevisanutto PE, Campbell DK, Coker DF, Castro Neto AH (2015) Phosphorene oxides: bandgap engineering of phosphorene by oxidation. Phys Rev B 91(8):085407CrossRefGoogle Scholar
  22. 22.
    Sa B, Li YL, Qi J, Ahuja R, Sun Z (2014) Strain engineering for phosphorene: the potential application as a photocatalyst. J Phys Chem C 118(46):26560–26568CrossRefGoogle Scholar
  23. 23.
    Ramasubramaniam A, Muniz AR (2014) Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Phys Rev B 90(8):085424CrossRefGoogle Scholar
  24. 24.
    Li W, Zhang G, Zhang YW (2014) Electronic properties of edge-hydrogenated phosphorene nanoribbons: a first-principles study. J Phys Chem C 118(38):22368–22372CrossRefGoogle Scholar
  25. 25.
    Padilha JE, Fazzio A, da Silva AJR (2015) van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. Phys Rev Lett 114(6):066803CrossRefGoogle Scholar
  26. 26.
    Kulish VV, Malyi OI, Persson C, Wu P (2015) Adsorption of metal adatoms on single-layer phosphorene. Phys Chem Chem Phys 17(2):992–1000CrossRefGoogle Scholar
  27. 27.
    Li P, Appelbaum I (2014) Electrons and holes in phosphorene. Phys Rev B 90(11):115439CrossRefGoogle Scholar
  28. 28.
    Wang G, Pandey R, Karna SP (2015) Phosphorene oxide: stability and electronic properties of a novel two-dimensional material. Nanoscale 7(2):524–531CrossRefGoogle Scholar
  29. 29.
    Liang L, Wang J, Lin W, Sumpter BG, Meunier V, Pan M (2014) Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett 14(11):6400–6406CrossRefGoogle Scholar
  30. 30.
    Ziletti A, Carvalho A, Campbell DK, Coker DF, Castro Neto AH (2015) Oxygen defects in phosphorene. Phys Rev Lett 114(4):046801CrossRefGoogle Scholar
  31. 31.
    Liu Q, Zhang X, Abdalla LB, Fazzio A, Zunger A (2015) Switching a normal insulator into a topological insulator via electric field with application to phosphorene. Nano Lett 15(2):1222–1228CrossRefGoogle Scholar
  32. 32.
    Guo H, Lu N, Dai J, Wu X, Zeng XC (2014) Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J Phys Chem C 118(25):14051–14059CrossRefGoogle Scholar
  33. 33.
    Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M, Roelofs A (2014) Tunable transport gap in phosphorene. Nano Lett 14(10):5733–5739CrossRefGoogle Scholar
  34. 34.
    Dai J, Zeng XC (2014) Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J Phys Chem Lett 5(7):1289–1293CrossRefGoogle Scholar
  35. 35.
    Nicotra G, Mio AM, Cupolillo A, Hu J, Wei J, Mao Z, Deretzis I, Politano A, Spinella C (2015) Stem and eels investigation on black phosphorus at atomic resolution. Microsc Microanal 21:427CrossRefGoogle Scholar
  36. 36.
    Nicotra G, Politano A, Mio A, Deretzis I, Hu J, Mao Z, Wei J, La Magna A, Spinella C (2016) Absorption edges of black phosphorus: a comparative analysis. Physica Status Solidi B 253(12):2509–2514CrossRefGoogle Scholar
  37. 37.
    Gillgren N, Wickramaratne D, Shi Y, Espiritu T, Yang J, Hu J, Wei J, Liu X, Mao Z, Watanabe K et al (2014) Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater 2(1):011001CrossRefGoogle Scholar
  38. 38.
    Kim JS, Liu Y, Zhu W, Kim S, Wu D, Tao L, Dodabalapur A, Lai K, Akinwande D (2015) Toward air-stable multilayer phosphorene thin-films and transistors. Sci Rep 5:8989CrossRefGoogle Scholar
  39. 39.
    Pei J, Gai X, Yang J, Wang X, Yu Z, Choi DY, Luther-Davies B, Lu Y (2016) Producing air-stable monolayers of phosphorene and their defect engineering. Nat Commun 7(10):450Google Scholar
  40. 40.
    Politano A, Vitiello M, Viti L, Boukhvalov D, Chiarello G (2017) The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials beyond graphene and topological insulators. FlatChem 1:60–64CrossRefGoogle Scholar
  41. 41.
    Yang T, Dong B, Wang J, Zhang Z, Guan J, Kuntz K, Warren SC, Tománek D (2015) Interpreting core-level spectra of oxidizing phosphorene: theory and experiment. Phys Rev B 92(12):1–6CrossRefGoogle Scholar
  42. 42.
    Castellanos-Gomez A, Vicarelli L, Prada E, Island JO, Narasimha-Acharya K, Blanter SI, Groenendijk DJ, Buscema M, Steele GA, Alvarez J et al (2014) Isolation and characterization of few-layer black phosphorus. 2D Mater 1(2):025001CrossRefGoogle Scholar
  43. 43.
    Huang Y, Qiao J, He K, Bliznakov S, Sutter E, Chen X, Luo D, Meng F, Su D, Decker J et al (2016) Interaction of black phosphorus with oxygen and water. Chem Mater 28(22):8330–8339CrossRefGoogle Scholar
  44. 44.
    Politano A, Vitiello MS, Viti L, Hu J, Mao Z, Wei J, Chiarello G, Boukhvalov DW (2016) Unusually strong lateral interaction in the co overlayer in phosphorene-based systems. Nano Res 9(9):2598–2605CrossRefGoogle Scholar
  45. 45.
    Miao J, Cai L, Zhang S, Nah J, Yeom J, Wang C (2017) Air-stable humidity sensor using few-layer black phosphorus. ACS Appl Mater Interfaces 9(11):10019–10026CrossRefGoogle Scholar
  46. 46.
    Shim J, Oh S, Kang DH, Jo SH, Ali MH, Choi WY, Heo K, Jeon J, Lee S, Kim M et al (2016) Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat Commun 7(13):413Google Scholar
  47. 47.
    Mukhopadhyay TK, Datta A (2017) Ordering and dynamics for the formation of two-dimensional molecular crystals on black phosphorene. J Phys Chem C 121(18):10210–10223CrossRefGoogle Scholar
  48. 48.
    Dion M, Rydberg H, Schroder E, Langreth DC, Lundqvist BI (2004) Van der Waals density functional for general geometries. Phys Rev Lett 92(24):246401CrossRefGoogle Scholar
  49. 49.
    Klimeš J, Bowler DR, Michaelides A (2009) Chemical accuracy for the van der waals density functional. J Phys Condens Matter 22(2):022201CrossRefGoogle Scholar
  50. 50.
    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14(11):2745–2779CrossRefGoogle Scholar
  51. 51.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  52. 52.
    Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4):4033–4041CrossRefGoogle Scholar
  53. 53.
    Tran V, Soklaski R, Liang Y, Yang L (2014) Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys Rev B 89(23):235319CrossRefGoogle Scholar
  54. 54.
    Ferreira F, Ribeiro R (2017) Improvements in the g w and bethe-salpeter-equation calculations on phosphorene. Phys Rev B 96(11):115431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Antioquia UdeAMedellínColombia
  2. 2.Centro de Investigación en Ciencias-IICBAUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  3. 3.Facultad de Ciencias BásicasUniversidad de MedellínMedellínColombia

Personalised recommendations