Journal of Materials Science

, Volume 53, Issue 8, pp 5584–5603 | Cite as

A review of slip transfer: applications of mesoscale techniques

  • Abigail Hunter
  • Brandon Leu
  • Irene J. Beyerlein
Interface Behavior


In this review article, we present and discuss recent mesoscale modeling studies of slip transmission of dislocations through biphase interfaces. Specific focus is given to fcc/fcc material systems. We first briefly review experimental, atomistic, and continuum-scale work that has helped to shape our understanding of these systems. Then several mesoscale methods are discussed, including Peierls–Nabarro models, discrete dislocation dynamics models, and phase field-based techniques. Recent extensions to the mesoscale mechanics technique called phase field dislocation dynamics are reviewed in detail. Results are compiled and discussed in terms of the proposed guidelines that relate composite properties to the critical stress required for a slip transmission event.



A. H. would like to acknowledge support from the Los Alamos National Laboratory Directed Research and Development (LDRD) Program under the Project # 20160156ER. I.J.B. acknowledges financial support from the National Science Foundation Designing Materials to Revolutionize and Engineer our Future (DMREF) Program (NSF CMMI-1729887). B. L. acknowledges financial support from the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.


  1. 1.
    Acharya A (2007) Jump condition for GND evolution as a constraint on slip transmission at grain boundaries. Philos Mag 87(8–9):1349–1359CrossRefGoogle Scholar
  2. 2.
    Akasheh F, Zbib HM, Hirth JP, Hoagland RG, Misra A (2007) Dislocation dynamics analysis of dislocation intersections in nanoscale metallic multilayered composites. J Appl Phys 101:084314CrossRefGoogle Scholar
  3. 3.
    Akasheh F, Zbib HM, Hirth JP, Hoagland RG, Misra A (2007) Interaction between glide dislocations and parallel interfacial dislocations in nanoscale strained layers. J Appl Phys 102:034314CrossRefGoogle Scholar
  4. 4.
    Anderson PM, Foecke T, Hazzledine PM (1999) Dislocation-based deformation mechanisms in metallic nanolaminates. MRS Bull 24(2):27–33CrossRefGoogle Scholar
  5. 5.
    Anderson PM, Li C (1995) Hall-petch relations for multilayered materials. Nanostruct Mater 5(3):349–362CrossRefGoogle Scholar
  6. 6.
    Anderson PM, Rao S, Cheng Y, Hazzledine PM (1999) The critical stress for transmission of a dislocation across an interface: results from peierls and embedded atom models. Mater Res Soc Symp Proc 586:267–272CrossRefGoogle Scholar
  7. 7.
    Anderson PM, Xin XJ (2002) The critical shear stress to transmit a peierls screw dislocation across a non-slipping interface. In: Chuang TJ, Rudnicki JW (eds) Multiscale fracture and deformation in materials and structures: James R. Rice 60th anniversary volume. Kluwer Academic Publishers, Dordrecht, p 87CrossRefGoogle Scholar
  8. 8.
    Ashmawi WM, Zikry MA (2002) Prediction of grain-boundary interfacial mechanisms in polycrystalline materials. J Eng Mater Technol 124(1):88–96CrossRefGoogle Scholar
  9. 9.
    Bertin N, Capolungo L, Beyerlein IJ (2013) Hybrid dislocation dynamics based strain hardening constitutive model. Int J Plast 49:119–144CrossRefGoogle Scholar
  10. 10.
    Beyerlein IJ, Demkowicz MJ, Misra A, Uberuaga BP (2015) Defect-interface interactions. Prog Mater Sci 74:125–210CrossRefGoogle Scholar
  11. 11.
    Beyerlein IJ, Hunter A (2016) Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics. Philos Trans R Soc A 374:20150166CrossRefGoogle Scholar
  12. 12.
    Beyerlein IJ, Mayeur JR (2015) Mesoscale investigations for the evolution of interfaces in plasticity. Curr Opin Solid State Mater Sci 19:203–211CrossRefGoogle Scholar
  13. 13.
    Beyerlein IJ, Mayeur JR, Zheng S, Mara NA, Wang J, Misra A (2014) Emergence of stable interfaces under extreme plastic deformation. Proc Natl Acad Sci 111(12):4386–4390CrossRefGoogle Scholar
  14. 14.
    Beyerlein IJ, Wang J, Kang K, Zheng SJ, Mara NA (2013) Twinnability of bimetal interfaces in nanostructured composites. Mater Res Lett 1(2):89–95CrossRefGoogle Scholar
  15. 15.
    Bieler TR, Eisenlohr P, R F, Kumar D, Mason DE, Crimp M, Raabe D (2009) The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int J Plast 25(9):1655–1683CrossRefGoogle Scholar
  16. 16.
    Cai W, Bulatov VV (2004) Mobility laws in dislocation dynamics simulations. Mater Sci Eng A 387–389:277–281CrossRefGoogle Scholar
  17. 17.
    Cao L, Hunter A, Beyerlein IJ, Koslowski M (2015) The role of partial mediated slip during quasi-static deformation of 3d nanocrystalline metals. J Mech Phys Solids 78:415–426CrossRefGoogle Scholar
  18. 18.
    Carpenter JS, McCabe RJ, Mayeur JR, Mara NA, Beyerlein IJ (2015) Interface-driven plasticity: the presence of an interface-affected zone in metallic lamellar composites. Adv Eng Mater 17:109–114CrossRefGoogle Scholar
  19. 19.
    Carpenter JS, Nizolek T, McCabe RJ, Zheng SJ, Scott JE, Vogel SC, Mara NA, Pollock TM, Beyerlein IJ (2015) The suppression of instabilities via biphase interfaces during bulk fabrication of nanograined zirconium. Mater Res Lett 3:50–57CrossRefGoogle Scholar
  20. 20.
    Cermelli P, G ME (2002) Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations. Int J Solids Struct 39(26):6281–6309CrossRefGoogle Scholar
  21. 21.
    Clark WAT, Wagoner RH, Shen ZY, Lee TC, Robertson IM, Birnbaum HK (1992) On the criteria for slip transmission across interfaces in polycrystals. Scr Metall Mater 26(2):203–206CrossRefGoogle Scholar
  22. 22.
    Dikken RJ, Khajeh Salehani M (2017) Edge dislocation impingment on interfaces between dissimilar metals. Accessed 22 Aug 2017
  23. 23.
    Duesbery MS (1989) The dislocation core and plasticity. In: Nabarro FRN (ed) Dislocations in solids: basic problems and applications, vol 8. Elsevier, Amsterdam, p 67Google Scholar
  24. 24.
    Dundurs J (1967) On the interaction of a screw dislocation with inhomogeneities. In: Eringen AC (ed) Recent advances in engineering science, vol 2. Gordon & Breach Science Publishers Ltd., Cambridge, pp 223–233Google Scholar
  25. 25.
    Egami T, Maeda K, Vitek V (1980) Structural defects in amorphous solids a computer simulation study. Philos Mag A 41:883–901CrossRefGoogle Scholar
  26. 26.
    Ekh M, Bargmann S, Grymer M (2011) Influence of grain boundary conditions on modeling of size-dependence in polycrystals. Acta Mech 218(1–2):103–113CrossRefGoogle Scholar
  27. 27.
    Escaig B (1968) Cross-slipping process in the fcc structure. In: Rosenfield AR, Hahn GT, Bement AL Jr, Jaffee RI (eds) Proceedings of the battelle colloquium dislocation dynamics. McGraw-Hill, New York, p 655Google Scholar
  28. 28.
    Espinosa HD, Panico M, Berbenni S, Schwarz KW (2006) Discrete dislocation dynamics simulations to interpret plasticity size and surface effects in freestanding fcc thin films. Int J Plast 22:2091–2117CrossRefGoogle Scholar
  29. 29.
    Ghoniem NM, Han X (2005) Dislocation motion in anisotropic multilayer materials. Philos Mag 85(24):2809–2830CrossRefGoogle Scholar
  30. 30.
    Ginzburg VL (1945) The dielectric properties of crystals of seignettcelectric substances and of barium titanate. Zh Eksp Teor Fiz 15:739–749Google Scholar
  31. 31.
    Han X, Ghoniem NM (2005) Stress fields and interaction forces of dislocations in anisotropic multilayer thin films. Philos Mag 85(11):1205–1225CrossRefGoogle Scholar
  32. 32.
    Head AK (1953) X. The interaction of dislocations and boundaries. Lond Edinb Dublin Philos Mag J Sci 44(348):92–94CrossRefGoogle Scholar
  33. 33.
    Henager CH Jr, Hoagland RG (2004) A rebound mechanism for misfit dislocation creation in metallic nanolayers. Scr Mater 50(5):701–705CrossRefGoogle Scholar
  34. 34.
    Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New YorkGoogle Scholar
  35. 35.
    Hoagland RG, Mitchell TE, Hirth JP, Kung H (2002) On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos Mag A 82(4):643–664Google Scholar
  36. 36.
    Hu SY, Li YL, Zheng YX, Chen LQ (2004) Effect of solutes on dislocation motion \(-\) a phase-field simulation. Int J Plast 20(3):403–425CrossRefGoogle Scholar
  37. 37.
    Huang H, Spaepen F (2000) Tensile testing of free-standing cu, ag and al thin films and ag/cu multilayers. Acta Mater 48(12):3261–3269CrossRefGoogle Scholar
  38. 38.
    Huang S, Beyerlein IJ, Zhou C (2017) Nanograin size effects on the strength of biphase nanolayered composites. Sci Rep 7(1):11251CrossRefGoogle Scholar
  39. 39.
    Hunter A, Beyerlein IJ (2014) Predictions of an alternative pathway for grain-boundary driven twinning. Appl Phys Lett 104(233112):1–4Google Scholar
  40. 40.
    Hunter A, Beyerlein IJ (2014) Stacking fault emission from grain boundaries: material dependencies and grain size effects. Mater Sci Eng A 600:200–210CrossRefGoogle Scholar
  41. 41.
    Hunter A, Beyerlein IJ (2015) Relationship between monolayer stacking faults and twins in nanocrystals. Acta Mater 88:207–217CrossRefGoogle Scholar
  42. 42.
    Hunter A, Zhang RF, Beyerlein IJ (2014) The core structure of dislocation and their relationship to the material \(\gamma \)-surface. J Appl Phys 115:134314CrossRefGoogle Scholar
  43. 43.
    Kamat SV, Hirth JP, Carnahan B (1987) Image forces on screw dislocations in multilayer structures. Scr Metall Mater 21:1587–1592CrossRefGoogle Scholar
  44. 44.
    Koehler JS (1970) Attempt to design a strong solid. Phys Rev B 2(2):547–551CrossRefGoogle Scholar
  45. 45.
    Koslowski M, Cuitiño A, Ortiz M (2002) A phase-field theory of dislocations dynamics, strain hardening and hysteresis in ductile single crystals. J Mech Phys Solids 50(12):2597–2635CrossRefGoogle Scholar
  46. 46.
    Koslowski M, Wook Lee D, Lei L (2011) Role of grain boundary energetics on the maximum strength of nano crystalline nickel. J Mech Phys Solids 59:1427–1436CrossRefGoogle Scholar
  47. 47.
    Krzanowski JE (1991) The effect of composition profile shape on the strength of metallic multilayer structures. Scr Metall Mater 25(6):1465–1470CrossRefGoogle Scholar
  48. 48.
    Kubin L (2013) Dislocations. Mesoscale simulations and plastic flow. Oxford University Press, OxfordCrossRefGoogle Scholar
  49. 49.
    Landau LD (1937) On the theory of phase transitions. i Zh Eksp Teor Fiz 7:19–42Google Scholar
  50. 50.
    Lee TC, Robertson TC, Birnbaum HK (1990) Tem in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos Mag A 62(1):131–153CrossRefGoogle Scholar
  51. 51.
    Lee TC, Robertson TC, Birnbaum HK (1990) An in situ transmission electron microscope deformation study of the slip transfer mechanisms in metals. Metall Trans A 21(9):2437–2447CrossRefGoogle Scholar
  52. 52.
    Lei L, Marian JL, Koslowski M (2013) Phase-field modeling of defect nucleation and propagation in domains with material inhomogeneities. Modell Simul Mater Sci Eng 21(025009):1–15Google Scholar
  53. 53.
    Leibfried G, Breuer N (1978) Point defects in metals, vol. 1, springer tracts in modern physics, vol 81. Springer, BerlinGoogle Scholar
  54. 54.
    Levitas VI, Javanbakht M (2012) Advanced phase-field approach to dislocation evolution. Phys Rev B 14:140101CrossRefGoogle Scholar
  55. 55.
    Levitas VI, Javanbakht M (2015) Thermodynamically consistent phase field approach to dislocation evolution at small and large strains. J Mech Phys Solids 82:345–366CrossRefGoogle Scholar
  56. 56.
    Lim LC, Raj R (1985) Continuity of slip screw and mixed crystal dislocations across bicrystals of nickel at 573k. Acta Metall 33(8):1577–1583CrossRefGoogle Scholar
  57. 57.
    Louat N (1985) Alloys, strong at room and elevated temperatures from powder metallurgy. Acta Metall 33(1):59–69CrossRefGoogle Scholar
  58. 58.
    Louchez MA, Thuinet L, Besson R, Legris A (2017) Microscopic phase-field modeling of hcp|fcc interfaces. Comput Mater Sci 132:62–73CrossRefGoogle Scholar
  59. 59.
    Ma A, Roters F, Raabe D (2006) On the consideration of interaction between dislocations and grain boundaries in crystal plasticity finite element modeling–theory, experiments, and simulations. Acta Metall 54(8):2181–2194Google Scholar
  60. 60.
    Mara NA, Beyerlein IJ (2014) Review: effect of bimetal interface structure on the mechanical behavior of cu-nb fcc-bcc nano layered composites. J Mater Sci 49:6497–6516. CrossRefGoogle Scholar
  61. 61.
    Martinez E, Caro A, Beyerlein IJ (2014) Atomistic modeling of defect-induced plasticity in cunb nanocomposites. Phys Rev B 90:054103CrossRefGoogle Scholar
  62. 62.
    Mayeur JR, Beyerlein IJ, Bronkhorst CA, Mourad HM (2015) Incorporating interface affected zones into crystal plasticity. Int J Plast 65:206–225CrossRefGoogle Scholar
  63. 63.
    Mianroodi JR, Hunter A, Beyerlein IJ, Svendsen B (2016) Theoretical and computational comparison of models for dislocation dissociation and stacking fault/core formation in fcc systems. J Mech Phys Solids 95:719–741CrossRefGoogle Scholar
  64. 64.
    Mianroodi JR, Svendsen B (2015) Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems. J Mech Phys Solids 77:109–122CrossRefGoogle Scholar
  65. 65.
    Misra A (2006) Mechanical behavior of metallic nanolaminates. In: Hannink RHJ, Hill AJ (eds) Nanostructure control of materials, chap. 7. Woodhead Publishing Limited, Cambridge, pp 146–176CrossRefGoogle Scholar
  66. 66.
    Misra A, Gibala R (1999) Slip transfer and dislocation nucleation processes in multiphase ordered ni-fe-al alloys. Metall Mater Trans A 30(4):991–1001CrossRefGoogle Scholar
  67. 67.
    Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53(18):4817–4824CrossRefGoogle Scholar
  68. 68.
    Monclús MA, Zheng SJ, Mayeur JR, Beyerlein IJ, Mara NA, Polcar T, Llorca J, Molina-Aldareguía JM (2013) Optimum high temperature strength of two-dimensional nanocomposites. Appl Phys Lett Mater 1(5):052103Google Scholar
  69. 69.
    Mura T (1987) Micromechanics of defects in solids. Kluwer Academic Publishers, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  70. 70.
    Nizolek T, Begley MR, McCabe RJ, Avallone JT, Mara NA, Beyerlein IJ, Pollock TM (2017) Strain fields induced by kink band propagation in cu-nb nanolaminate composites. Acta Mater 133:303–315CrossRefGoogle Scholar
  71. 71.
    Nizolek T, Beyerlein IJ, Mara NA, Avallone JT, Pollock TM (2016) Tensile behavior and flow stress anisotropy of accumulative roll bonded cu-nb nanolaminates. Appl Phys Lett 108:051903CrossRefGoogle Scholar
  72. 72.
    Nizolek T, Mara NA, Beyerlein IJ, Avallone JT, Pollock TM (2014) Processing and deformation behavior of bulk cu-nb nanolaminates. Metallogr Microstruct Anal 3:470–476CrossRefGoogle Scholar
  73. 73.
    Ortiz M, Phillips R (1999) Nanomechanics of defects in solids. Adv Appl Mech 36:1–79Google Scholar
  74. 74.
    Pacheco ES, Mura T (1969) Interaction between a screw dislocation and a bimetallic interface. J Mech Phys Solids 17(3):163–170CrossRefGoogle Scholar
  75. 75.
    Patriarca L, Abuzaid W, Sehitoglu H, Maier HJ (2013) Slip transmission in bcc fecr polycrystal. Mater Sci Eng A 588:308–317CrossRefGoogle Scholar
  76. 76.
    Peierls R (1940) The size of a dislocation. Proc Phys Soc 52(1):24–37CrossRefGoogle Scholar
  77. 77.
    Rao SI, Hazzledine PM (2000) Atomistic simulations of dislocation-interface interactions in the cu-ni multilayer system. Philos Mag A 80(9):2011–2040CrossRefGoogle Scholar
  78. 78.
    Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization, and multiscale methods in crystal plasticity finite element modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211CrossRefGoogle Scholar
  79. 79.
    Ruffini A, Le Bouar Y, Finel A (2017) Three-dimensional phase-field model of dislocations for a heterogeneous face-centered cubic crystal. J Mech Phys Solids 105:95–115CrossRefGoogle Scholar
  80. 80.
    Schweitz KO, Chevallier J, B J, Matz W, Schell N (2001) Hardness in ag/ni au/ni and cu/ni multilayers. Philos Mag A 81(8):2021–2032CrossRefGoogle Scholar
  81. 81.
    Seal JR, Crimp MA, Bieler TR, Boehlert CJ (2012) Analysis of slip transfer and deformation behavior across the \(\alpha /\beta \) interface in ti-5al-2.5 sn (wt.%) with an equiaxed microstructure. Mater Sci Eng A 552:61–68CrossRefGoogle Scholar
  82. 82.
    Shehadeh MA, Lu G, Banerjee S, Kioussis N, Ghoniem N (2007) Dislocation transmission across the cu/ni interface: a hybrid atomistic-continuum study. Philos Mag 87(10):1513–1529CrossRefGoogle Scholar
  83. 83.
    Shen C, Wang Y (2004) Incorporation of \(\gamma \)-surface to phase field model of dislocation:simulating dislocation dissociation in fcc crystals. Acta Mater 52:683–691CrossRefGoogle Scholar
  84. 84.
    Shen Y, Anderson PM (2006) Transmission of a screw dislocation across a coherent, slipping interface. Acta Mater 54:3941–3951CrossRefGoogle Scholar
  85. 85.
    Shen Y, Anderson PM (2007) Transmission of a screw dislocation across a coherent, non-slipping interface. J Mech Phys Solids 55:956–979CrossRefGoogle Scholar
  86. 86.
    Subedi S, Beyerlein IJ, LeSar R, Rollet AD (2018) Strength of nanoscale metallic multilayers. Scr Mater 145:132–136CrossRefGoogle Scholar
  87. 87.
    Szajewski BA, Hunter A, Beyerlein IJ (2017) The core structure and recombination energy of a copper screw dislocation: a peierls study. Philos Mag 97(3):2143–2163CrossRefGoogle Scholar
  88. 88.
    Szajewski BA, Hunter A, Luscher DJ, Beyerlein IJ The influence of anisotropy on the core structure of shockley partial dislocations within fcc materials. Model Simul Mater Sci Eng.
  89. 89.
    Voyiadjis GZ, Faghihi D, Zhang Y (2014) A theory for grain boundaries with strain-gradient plasticity. Int J Solids Struct 51(10):1872–1889CrossRefGoogle Scholar
  90. 90.
    Wang J, Beyerlein IJ, Mara NA, Bhattacharyya D (2011) Interface-facilitated deformation twinning in copper within submicron ag-cu multilayered composites. Scr Mater 64(12):1083–1086CrossRefGoogle Scholar
  91. 91.
    Wang J, Hoagland RG, Hirth JP, Misra A (2008) Atomistic modeling of the interaction of glide dislocations with weak interfaces. Acta Mater 56(19):5685–5693CrossRefGoogle Scholar
  92. 92.
    Wang J, Zhang RF, Zhou CZ, Beyerlein IJ, Misra A (2014) Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int J Plast 53:40–55CrossRefGoogle Scholar
  93. 93.
    Wang L, Eisenlohr P, Yang Y, Bieler TR, Crimp MA (2010) Nucleation of paired twins at grain boundaries in titanium. Scr Metall 63(4):827–830CrossRefGoogle Scholar
  94. 94.
    Wang L, Yang Y, Eisenlohr P, Bieler TR, Crimp MA, Mason DE (2010) Twin nucleation by slip transfer across grain boundaries in commercial purity titanium. Metall Mater Trans A 41(2):421–430CrossRefGoogle Scholar
  95. 95.
    Wang YU, Jin YM, Cuitiño AM, Khachaturyan AG (2001) Nanoscale phase field microelasticity theory of dislocations: model and 3d simulations. Acta Mater 49:1847–1857CrossRefGoogle Scholar
  96. 96.
    Wang ZQ, Beyerlein IJ (2011) An atomistically-informed dislocation dynamics model for the plastic anisotropy and tension-compression asymmetry of bcc metals. Int J Plast 27(10):1471–1484CrossRefGoogle Scholar
  97. 97.
    Wang ZQ, Beyerlein IJ, LeSar R (2009) Plastic anisotropy of fcc single crystals in high rate deformation. Int J Plast 25:26–48CrossRefGoogle Scholar
  98. 98.
    Werner E, Prantl W (1990) Slip transfer across grain and phase boundaries. Acta Metall Mater 38(3):533–537CrossRefGoogle Scholar
  99. 99.
    Werner E, Stüwe HP (1985) On the work-hardening of dual-phase alloys. Z Metall 76(5):353–357Google Scholar
  100. 100.
    Werner E, Stüwe HP (1985) Phase boundaries as obstacles to dislocation motion. Mater Sci Eng 68(2):175–182CrossRefGoogle Scholar
  101. 101.
    Zbib HM, Overman CT, Akasheh F, Bahr D (2011) Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int J Plast 27(10):1618–1639CrossRefGoogle Scholar
  102. 102.
    Zeng Y, Hunter A, Beyerlein IJ, Koslowski M (2016) A phase field dislocation dynamics model for a bicrystal interface system: an investigation into dislocation slip transmission across cube-on-cube interfaces. Int J Plast 79:293–313CrossRefGoogle Scholar
  103. 103.
    Zhang RF, Germann TC, Liu J, Wang J, Beyerlein IJ (2014) Layer size effect on the shock compression behavior of fcc-bcc nanolaminates. Acta Mater 79:74–83CrossRefGoogle Scholar
  104. 104.
    Zheng S, Beyerlein IJ, Carpenter JS, Kang K, Wang J, Han W, Mara N (2013) High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat Commun 4(1696):1–8Google Scholar
  105. 105.
    Zheng S, Ni Y, He L (2015) Phase field modeling of a glide dislocation transmission across a coherent sliding interface. Model Simul Mater Sci Eng 23:035002CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature (outside the USA) 2017

Authors and Affiliations

  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.University of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations