Advertisement

Journal of Materials Science

, Volume 53, Issue 5, pp 3544–3556 | Cite as

Engineering the band gap of LaCrO3 doping with transition metals (Co, Pd, and Ir)

  • O. PolatEmail author
  • Z. Durmus
  • F. M. Coskun
  • M. Coskun
  • A. Turut
Electronic materials

Abstract

Exceptional properties such as dielectric, ferroelectric, piezoelectric, magnetic, catalytic, and photovoltaic of perovskite materials open new doors to many groundbreaking discoveries for unique device ideas. These materials properties are inherited from their crystal structures; therefore, the features can be tuned via varying details of the crystal structures. In the literature, LaCrO3 (LCO) is one those mostly examined perovskites for various purposes such as solid oxide fuel cells, catalytic converters, and sensors. In the present study, the band gap tuning of LCO was investigated via doping a transition element such as cobalt (Co), palladium (Pd), and iridium (Ir) into Cr atom. The synthesized doped and un-doped LCO powders were characterized by infrared spectra (IR) and X-ray diffraction (XRD). Scanning electron microscopy (SEM) was employed to study the surface topography of LCO and doped LCO thin films on silicon substrates. The band gaps of the LCO and doped LCO films were scrutinized using a UV–Vis spectrometer. Our study has shown that the band gap of LCO was successfully lowered from 3.4 eV to 2.66 eV and can be engineered via substitution at various mol% of transition elements (Co, Pd, Ir) onto B-site Cr atom in the LCO perovskite structure.

Notes

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through Grant No: 116F025. The authors would like to thank Dr. David K. Christen for his valuable comments.

References

  1. 1.
    Monthoux P, Pines D, Lonzarich GG (2007) Superconductivity without phonons. Nature 450:1177–1183CrossRefGoogle Scholar
  2. 2.
    Tao J, Niebieskikwiat D, Varela M, Luo W, Schofield MA, Zhu Y, Salamon MB, Zuo JM, Pantelides ST, Pennycook SP (2009) Direct Imaging of Nanoscale Phase Separation in La0.55Ca0.45MnO3: relationship to Colossal Magnetoresistance. Phys Rev Lett 103:097202.  https://doi.org/10.1103/PhysRevLett.103.097202 CrossRefGoogle Scholar
  3. 3.
    Ahn KH, Wu XW, Liu K, Chien CL (1996) Magnetic properties and colossal magnetoresistance of La(Ca)MnO3 materials doped with Fe. Phys Rev B 54:15299–15302CrossRefGoogle Scholar
  4. 4.
    Bhadram VS, Rajeswaran B, Sundaresan A, Narayana C (2013) Spin-phonon coupling in multiferroic RCrO3 (R-Y, Lu, Gd, Eu, Sm): a Raman study. Euro Phys Lett 101:17008–17014CrossRefGoogle Scholar
  5. 5.
    Pudmich G, Boukamp BA, Gonzalez-Cuenca M, Jungen W, Zipprich W, Tietz F (2000) Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells. Solid State Ion 135:433–438CrossRefGoogle Scholar
  6. 6.
    Fergus JW (2004) Lanthanum Chromite-based Materials for Solid Oxide Fuel Cell Interconnects. Solid State Ion 171:1–15CrossRefGoogle Scholar
  7. 7.
    Zwinkels MFM, Haussner O, Menon PG, Jaras SG (1999) Preparation and characterization of LaCrO3 and Cr2O3 methane combustion catalysts supported on LaAl11O18- and Al2O3-coated monoliths. Catal Today 47:73–82CrossRefGoogle Scholar
  8. 8.
    Lund A, Jacobsen T, Vels Hansen K, Mogensen M (2012) Composite Sr- and V-doped LaCrO3/YSZ sensor electrode operating at low oxygen levels. J Solid State Electrochem 16:2113–2120CrossRefGoogle Scholar
  9. 9.
    Liao DQ, Sun Y, Yang R, Cheng ZH (2007) Structural, magnetic, and electrical properties of La1−xNdxMn0.8Cr0.2O3 (x ≤ 0.3). Phys B 394:104–110CrossRefGoogle Scholar
  10. 10.
    Sun X, Dong XT, Wang JX, Liu GX (2011) Electrospinning Fabrication and Photocatalytic Properties of LaCrO4 and LaCrO3 Nanobelts. Chem J Chin Univ 32:2262–2267Google Scholar
  11. 11.
    Park JW, Lee YK, Stimming U, Singhal SC, Tagawa H, Lehnert W, (1997) In: Proceedings of the fifth international symposium on solid oxide fuel cells, Aachen, Germany, June 2–5, pp 1253–1262Google Scholar
  12. 12.
    Simner SP, Hardy JS, Stevensn JW, Armsrong TR, Singhal SC, (1999) In: Proceedings of the sixth international symposium on solid oxide fuel cells, Honolulu, Hawaii, October 17–22, pp 696–705Google Scholar
  13. 13.
    Qi H, Luan Y, Che S, Zuo L, Zhao X, Hou C (2016) Preparation, characterization and electrical properties of Ca and Sr doped LaCrO3. Inorg Chem Commun 66:33–35CrossRefGoogle Scholar
  14. 14.
    Mori M, Hiei Y, Sammes NM (2000) Sintering behavior of Ca- or Sr-doped LaCrO3 perovskites including second phase of AECrO4 (AE = Sr, Ca) in air. Solid State Ion 135:743–748CrossRefGoogle Scholar
  15. 15.
    Mori M, Hieia Y, Sammes NM (1999) Sintering behavior and mechanism of Sr-doped lanthanum chromites with A site excess composition in air. Solid State Ion 123:103–111CrossRefGoogle Scholar
  16. 16.
    Wei T, Liu X, Yuan C, Gao Q, Xin X, Wang S (2014) A modified liquid-phase-assisted sintering mechanism for La0.8Sr0.2Cr1−xFexO3−δ A high density, redox-stable perovskite interconnect for solid oxide fuel cells. J Power Sour 250:152–159CrossRefGoogle Scholar
  17. 17.
    Chick LA, Liu J, Stevenson JW, Armstrong TR, McCready DE, Maupin GD, Coffey GW, Coyle CA (1997) Phase transitions and transient liquid-phase sintering in calcium-substituted lanthanum chromite. J Am Ceram Soc 80:2109–2120CrossRefGoogle Scholar
  18. 18.
    Carter JD, Nasrallah MM, Anderson HU (1996) Liquid phase behaviour in nonstoichiometric calcium-doped lanthanum chromites. J Mater Sci 31:157–163.  https://doi.org/10.1007/BF00355140 CrossRefGoogle Scholar
  19. 19.
    Homma K, Nakamura F, Ohba N, Sui AM, Hashimoto T (2007) Improvement of sintering property of LaCrO3 system by simultaneous substitution of Ca and Sr. J Ceram Soc Jpn 115:81–84CrossRefGoogle Scholar
  20. 20.
    Luo P, Zhang B, Zhao Q, He D, Chang A (2017) Characterization and electrical conductivity of La1−xSrxCrO3 NTC ceramics. J Mater Sci: Mater Electron 28:9265–9271Google Scholar
  21. 21.
    Koc R, Anderson HU (1995) Electrical and thermal transport properties of (La, Ca)(Cr, Co)O3. J Eur Ceram Soc 15:867–874CrossRefGoogle Scholar
  22. 22.
    Martijn HRL, Henny JMB, Henk V (1997) Thermodynamics and transport of ionic and electronic defects in crystalline oxides. J Am Ceram Soc 80:2175–2198Google Scholar
  23. 23.
    Stølen S, Bakkenw E, Mohn CE (2006) Oxygen-deficient perovskites: linking structure, energetics and ion transport. Phys Chem Chem Phys 8:429–447CrossRefGoogle Scholar
  24. 24.
    Oishi M, Yashiro K, Hong JO, Nigara Y, Kawada T, Mizusaki J (2007) Oxygen nonstoichiometry of B-site doped LaCrO3. Solid State Ion 178:307–312CrossRefGoogle Scholar
  25. 25.
    Huang WL, Zhu Q, Ge W, Li H (2011) Oxygen-vacancy formation in LaMO3 (M = Ti, V, Cr, Mn, Fe Co, Ni) calculated at both GGA and GGA + U levels. Comput Mater Sci 50:1800–1805CrossRefGoogle Scholar
  26. 26.
    Tanasescu S, Orasanu A, Berger D, Jitaru I, Schoonman J (2005) Electrical conductivity and thermodynamic properties of some alkaline earth-doped lanthanum chromites. Int J Thermophys 26:543–557CrossRefGoogle Scholar
  27. 27.
    Jiao H, Wang J, Ge J, Zhang L, Zhu H, Jiao S (2016) Fabrication, characterization and electrical conductivity of Ru-doped LaCrO3 dense perovskites. Solid State Commun 231–232:53–56CrossRefGoogle Scholar
  28. 28.
    Silva RS, Barrozo P, Moreno NO, Aguiar JA (2016) Structural and magnetic properties of LaCrO3 half-doped with Al. Ceram Int 42(13):14499–14504CrossRefGoogle Scholar
  29. 29.
    Abhigna K, Fu Z, Koc R (2017) Development of La(CrCoFeNi)O3 system perovskites as interconnect and cathode materials for solid oxide fuel cells. Ceram Int 43(10):7647–7652CrossRefGoogle Scholar
  30. 30.
    Sardar K, Lees MR, Kashtiban RJ, Sloan J, Walton RI (2011) Direct hydrothermal synthesis and physical properties of rare-earth and yttrium orthochromite perovskites. Chem Mater 23:48–56CrossRefGoogle Scholar
  31. 31.
    Wang S, Huang K, Hou C, Yuan L, Wu X, Lu D (2015) Low temperature hydrothermal synthesis, structure and magnetic properties of RECrO3 (RE = La, Pr, Nd, Sm). Dalton Trans 44(39):17201–17208CrossRefGoogle Scholar
  32. 32.
    Devi PS (1993) Citrate gel processing of the perovskite lanthanide chromites. J Mater Chem 3:373–379CrossRefGoogle Scholar
  33. 33.
    Manoharan SS, Patil KC (1993) Combustion route to fine particle perovskite oxides. J Solid State Chem 102:267–276CrossRefGoogle Scholar
  34. 34.
    Arima T, Tokura Y, Torrance JB (1993) Variation of optical gaps in perovskite-type 3d transition-metal oxides. Phys Rev B 48:17006–17009CrossRefGoogle Scholar
  35. 35.
    Arima T, Tokura Y (1995) Optical study of electronic structure in perovskite-type RMO3 (R = LaY; M = Sc, Ti, V, Cr, Mn, Fe Co, Ni, Cu)J. Phys Soc Jpn 64:2488–2501CrossRefGoogle Scholar
  36. 36.
    Gou GY, Bennett JW, Takenaka H, Rappe AM (2011) Post density functional theoretical studies of highly polar semiconductive Pb(Ti1-xNix)O3-x solid solutions: effects of cation arrangement on band gap. Phys Rev B 83:205115.  https://doi.org/10.1103/PhysRevB.83.205115 CrossRefGoogle Scholar
  37. 37.
    Qi T, Grinberg I, Rappe AM (2011) Band-gap engineering via local environment in complex oxides. Phys Rev B 83:224108.  https://doi.org/10.1103/PhysRevB.83.224108 CrossRefGoogle Scholar
  38. 38.
    Bennett JW, Grinberg I, Davies PK, Rappe AM (2010) Pb-free semiconductor ferroelectrics: a theoretical study of Pd-substituted Ba(Ti1-xCex)O−3 solid solutions. Phys Rev B 82:184106.  https://doi.org/10.1103/PhysRevB.82.184106 CrossRefGoogle Scholar
  39. 39.
    Choi WS, Chisholm MF, Singh DJ, Choi T, Jellison GE Jr, Choi HNL (2012) Wide bandgap tunability in complex transition metal oxides by site-specific substitution. Nat Commun 3:689.  https://doi.org/10.1038/ncomms1690 CrossRefGoogle Scholar
  40. 40.
    Grinberg I, West DV, Torres M, Gou G, Stein DM, Wu L, Chen G, Gallo EM, Akbashev AR, Davies PK, Spanier JE, Rappe AM (2013) Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 503:509–512CrossRefGoogle Scholar
  41. 41.
    Tan S, Yue S, Zhang YH (2003) Jahn-Teller distortion induced by Mg/Zn substitution on Mn sites in the perovskite manganites. Phys Lett A 319(2003):530–538Google Scholar
  42. 42.
    Jayabal P, Sasirekha V, Mayandi J, Jeganathan K, Ramakrishnan V (2014) A facile hydrothermal synthesis of SrTiO3 for dye sensitized solar cell application. J Alloys Compd 586:456–461CrossRefGoogle Scholar
  43. 43.
    Rao S, Rao GV, Ferraro CNR (1970) Infrared and electronic spectra of rare earth perovskites: ortho-chromites, -manganites and–ferrites, J.R. App Spectrosc 24:436–445CrossRefGoogle Scholar
  44. 44.
    Ganguly P, Vasanthacharya NY (1986) Infrared and Mössbauer spectroscopic study of the metal-insulator transition in some oxides of perovskite structure. J Solid State Chem 61:164–170CrossRefGoogle Scholar
  45. 45.
    Oishi M, Yashiro K, Hong JO, Nigara Y, Kawada T, Mizusaki J (2007) Oxygen nonstoichiometry of B-site doped LaCrO3. Solid State Ion 178(2007):307–312CrossRefGoogle Scholar
  46. 46.
    Corrêa HPS, Paiva-Santos CO, Setz LF, Martinez LG, Mello-Castanho SRH, Orlando MTD (2008) Crystal structure refinement of Co-doped lanthanum chromites. Powder Diffr 23(S1):S18–S22CrossRefGoogle Scholar
  47. 47.
    Jiao H, Ge JJ, Zhang L, Zhu H, Jiao S (2016) Fabrication, characterization and electrical conductivity of Ru-doped LaCrO3 dense perovskites. Solid State Commun 231:53–56CrossRefGoogle Scholar
  48. 48.
    Adaika K, Omari M (2015) Synthesis and physicochemical characterization of LaCr1-xCuxO3 J Sol-Gel. Sci Technol 75:298–304Google Scholar
  49. 49.
    Chadli I, Omari M, Dalo MA, Albiss BA (2016) Preparation by sol-gel method and characterization of Zn-doped LaCrO3 perovskite J Sol-Gel. Sci Technol 80:598–605Google Scholar
  50. 50.
    Nithya VD, Immanuel RJ, Senthilkumar ST, Sanjeeviraja C, Perelshtein I, Zitoun D, Selvan RK (2012) Studies on the structural, electrical and magnetic properties of LaCrO3, LaCr0.5Cu0.5O3 and LaCr0.5Fe0.5O3 by sol-gel method. Mater Res Bull 47:1861–1868CrossRefGoogle Scholar
  51. 51.
    Liu H, Yuan L, Qi H, Du Y, Wang S, Hou C (2017) Size-dependent optical and thermochromic properties of Sm3Fe5O12. RSC Adv 7:37765–37770CrossRefGoogle Scholar
  52. 52.
    Rajashree C, Balu AR, Nagarethinam VS (2015) Properties of Cd doped PbS thin films: doping concentration effect. Surf Eng 31:316–321CrossRefGoogle Scholar
  53. 53.
    Burstein E (1954) Anomalous optical absorption limit in InSb. Phys Rev 93:632–633CrossRefGoogle Scholar
  54. 54.
    Moss TS (1954) The Interpretation of the Properties of Indium Antimonide. Proc Phys Soc, London Sect B 67:775–782CrossRefGoogle Scholar
  55. 55.
    Wang F, Grinberg I, Rappeb AM (2014) Band gap engineering strategy via polarization rotation in perovskite ferroelectrics. Appl Phys Lett 104:152903.  https://doi.org/10.1063/1.4871707 CrossRefGoogle Scholar
  56. 56.
    Ehara S, Muramatsu K, Shimazu M, Tanaka J, Tsukioka M, Mori Y, Hattori T, Tamura H (1981) Dielectric properties of Bi4Ti3O12 below the curie temperature. Jpn J Appl Phys 20:877–881CrossRefGoogle Scholar
  57. 57.
    Singh DJ, Seo SSA, Lee HN (2010) Optical properties of ferroelectric Bi4Ti3O12. Phys Rev B 82:180103.  https://doi.org/10.1103/PhysRevB.82.180103 CrossRefGoogle Scholar
  58. 58.
    Jia C, Chen Y, Zhang WF (2009) Optical properties of aluminum, gallium, and indium-doped Bi4Ti3O12 thin films. J Appl Phys 105:113108.   https://doi.org/10.1063/1.3138813 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • O. Polat
    • 1
    Email author
  • Z. Durmus
    • 2
  • F. M. Coskun
    • 3
  • M. Coskun
    • 3
  • A. Turut
    • 3
  1. 1.Faculty of Engineering, Department of Industrial EngineeringIstanbul Kultur UniversityBakirkoy, IstanbulTurkey
  2. 2.Faculty of Pharmacy, Department of Pharmaceutical BiotechnologyBezmialem Vakif UniversityFatih, IstanbulTurkey
  3. 3.Faculty of Engineering, Department of Engineering PhysicsIstanbul Medeniyet UniversityUskudar, IstanbulTurkey

Personalised recommendations