Skip to main content
Log in

Characterization of hollow silica–polyelectrolyte composite nanoparticles by small-angle X-ray scattering

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hollow silica–polyelectrolyte composite nanoparticles were prepared using templates of spherical polyelectrolyte brushes which consist of a polystyrene (PS) core and a densely grafted linear poly(acrylic acid) shell. The obtained hollow particles were systematically studied by small-angle X-ray scattering (SAXS) in combination with other characterization methods such as transmission electron microscopy and dynamic light scattering. The hollow structure formed by dissolving the PS core was confirmed by the reduction of electron density to zero in the cavity through fitting SAXS data. SAXS revealed both the inward and outward expansions of the hollow silica–polyelectrolyte composite particles upon increasing pH from 3 to 9, while further increasing pH led to the partial dissolution of silica layer and even destruction of the hollow structure. SAXS was confirmed to be a unique and powerful characterization method to observe hollow silica nanoparticles, which should be ideal candidates for controlled drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Hu J, Chen M, Fang X, Wu L (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40(11):5472–5491

    Article  Google Scholar 

  2. Zhao Y, Jiang L (2009) Hollow micro/nanomaterials with multilevel interior structures. Adv Mater 21(36):3621–3638

    Article  Google Scholar 

  3. Si Y, Chen M, Wu L (2016) Syntheses and biomedical applications of hollow micro-/nano-spheres with large-through-holes. Chem Soc Rev 45(3):690–714

    Article  Google Scholar 

  4. Li Y, Shi J (2014) Hollow-structured mesoporous materials: chemical synthesis: functionalization and applications. Adv Mater 26(20):3176–3205

    Article  Google Scholar 

  5. Podsiadlo P, Kwon SG, Koo B, Lee B, Prakapenka VB, Dera P, Zhuravlev KK, Krylova G, Shevchenko EV (2013) How “Hollow” are hollow nanoparticles? J Am Chem Soc 135(7):2435–2438

    Article  Google Scholar 

  6. Khanal A, Inoue Y, Yada M, Nakashima K (2007) Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core–Shell–Corona Structure. J Am Chem Soc 129(6):1534–1535

    Article  Google Scholar 

  7. Tang F, Li L, Chen D (2012) Mesoporous Silica Nanoparticles: synthesis biocompatibility and drug delivery. Adv Mater 24(12):1504–1534

    Article  Google Scholar 

  8. Zhu Y, Shi J, Shen W, Dong X, Feng J, Ruan M, Li Y (2005) Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem 117(32):5213–5217

    Article  Google Scholar 

  9. Zhang Y, Hsu BYW, Ren C, Li X, Wang J (2015) Silica-based nanocapsules: synthesis, structure control and biomedical applications. Chem Soc Rev 44(1):315–335

    Article  Google Scholar 

  10. Park C, Oh K, Lee SC, Kim C (2007) Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. Angew Chem Int Ed 46(9):1455–1457

    Article  Google Scholar 

  11. Guerrero-Martinez A, Perez-Juste J, Liz-Marzan LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater 22(11):1182–1195

    Article  Google Scholar 

  12. Cao SS, Zhang Y, Zhou LL, Chen JR, Fang L, Fei D, Zhu HJ, Ge Y (2014) Stimuli-responsive controlled release and molecular transport from hierarchical hollow silica/polyelectrolyte multilayer formulations. J Mater Chem B 2(41):7243–7249

    Article  Google Scholar 

  13. Amstad E, Reimhult E (2012) Nanoparticle actuated hollow drug delivery vehicles. Nanomedicine 7(1):145–164

    Article  Google Scholar 

  14. Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20(21):3987–4019

    Article  Google Scholar 

  15. Wang Y, Wang J, Han H, Liu J, Zhao H, Shen M, Xu Y, Xu J, Li L, Guo X (2016) Self-assembled micelles of N-phthaloylchitosan-g-poly (N-vinylcaprolactam) for temperature-triggered non-steroidal anti-inflammatory drug delivery. J Mater Sci 51(3):1591–1599. doi:10.1007/s10853-015-9482-2

    Article  Google Scholar 

  16. Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114

    Article  Google Scholar 

  17. Chen M, Wu LM, Zhou SX, You B (2006) A method for the fabrication of monodisperse hollow silica spheres. Adv Mater 18(6):801–806

    Article  Google Scholar 

  18. Deng ZW, Chen M, Zhou SX, You B, Wu LM (2006) A novel method for the fabrication of monodisperse hollow silica spheres. Langmuir 22(14):6403–6407

    Article  Google Scholar 

  19. Tissot I, Novat C, Lefebvre F, Bourgeat-Lami E (2001) Hybrid latex particles coated with silica. Macromolecules 34(17):5737–5739

    Article  Google Scholar 

  20. Han L, Che SN (2013) Anionic surfactant templated mesoporous silicas (AMSs). Chem Soc Rev 42(9):3740–3752

    Article  Google Scholar 

  21. Zou H, Wu SS, Ran QP, Shen J (2008) A simple and low-cost method for the preparation of monodisperse hollow silica spheres. J Phys Chem C 112(31):11623–11629

    Article  Google Scholar 

  22. Chen KM, Zhu Y, Li L, Lu Y, Guo XH (2010) Recyclable spherical polyelectrolyte brushes containing magnetic nanoparticles in core. Macromol Rapid Commun 31(16):1440–1443

    Article  Google Scholar 

  23. Balmer JA, Mykhaylyk OO, Armes SP, Fairclough JPA, Ryan AJ, Gummel J, Murray MW, Murray KA, Wiliams NSJ (2011) Time-Resolved Small-Angle X-ray Scattering Studies of Polymer-Silica Nanocomposite Particles: initial Formation and Subsequent Silica Redistribution. J Am Chem Soc 133(4):826–837

    Article  Google Scholar 

  24. Grunder R, Urban G, Ballauff M (1993) Small-angle X-ray-analysis of latex-particles with core-shell morphology. Colloid Polym Sci 271(6):563–572

    Article  Google Scholar 

  25. Ballauff M, Bolze J, Dingenouts N, Hickl P, Pötschke D (1996) Small-angle X-ray scattering on latexes. Macromol Chem Phys 197(10):3043–3066

    Article  Google Scholar 

  26. Ballauff M (2011) Analysis of polymer colloids by small-angle X-ray and neutron scattering: contrast variation. Adv Eng Mater 13(8):793–802

    Article  Google Scholar 

  27. Dingenouts N, Bolze J, Pötschke D, Ballauff M (1999) Analysis of polymer latexes by small-angle X-ray scattering. In: Polymer latexes—epoxide resins—polyampholytes. Springer, Berlin, pp 1–47. doi:10.1007/3-540-68384-4_1

  28. Wang W, Li L, Henzler K, Lu Y, Wang J, Han H, Tian Y, Wang Y, Zhou Z, Lotze G, Narayanan T, Ballauff M, Guo X (2017) Protein immobilization onto cationic spherical polyelectrolyte brushes studied by small angle X-ray scattering. Biomacromol 18(5):1574–1581

    Article  Google Scholar 

  29. Wang W, Li L, Yu X, Han H, Guo X (2014) Distribution of magnetic nanoparticles in spherical polyelectrolyte brushes as observed by small-angle X-ray scattering. J Polym Sci Part B: Polym Phys 52(24):1681–1688

    Article  Google Scholar 

  30. Wang W, Chu F, Li L, Han H, Tian Y, Wang Y, Yuan Z, Zhou Z, Guo X (2016) Interactions among spherical poly(acrylic acid) brushes: observation by rheology and small angle X-ray scattering. J Polym Sci Part B: Polym Phys 54(3):405–413

    Article  Google Scholar 

  31. Wang S, Chen K, Xu Y, Yu X, Wang W, Li L, Guo X (2013) Protein immobilization and separation using anionic/cationic spherical polyelectrolyte brushes based on charge anisotropy. Soft Matter 9(47):11276–11287

    Article  Google Scholar 

  32. Tian Y, Li L, Han H, Wang W, Wang Y, Ye Z, Guo X (2016) Modification of spherical polyelectrolyte brushes by layer-by-layer self-assembly as observed by small angle X-ray scattering. Polymers 8(4):145

    Article  Google Scholar 

  33. de Robillard Q, Guo X, Ballauff M, Narayanan T (2000) Spatial correlation of spherical polyelectrolyte brushes in salt-free solution as observed by small-angle X-ray scattering. Macromolecules 33(24):9109–9114

    Article  Google Scholar 

  34. Ruckdeschel P, Dulle M, Honold T, Forster S, Karg M, Retsch M (2016) Monodisperse hollow silica spheres: an in-depth scattering analysis. Nano Res 9(5):1366–1376

    Article  Google Scholar 

  35. Chen ZH, Kim C, Zeng XB, Hwang SH, Jang J, Ungar G (2012) Characterizing size and porosity of hollow nanoparticles: SAXS, SANS, TEM, DLS, and adsorption isotherms compared. Langmuir 28(43):15350–15361

    Article  Google Scholar 

  36. Guo X, Weiss A, Ballauff M (1999) Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization. Macromolecules 32(19):6043–6046

    Article  Google Scholar 

  37. Huang SB, Yu XJ, Dong YM, Li L, Guo XH (2012) Spherical polyelectrolyte brushes: ideal templates for preparing pH-sensitive core-shell and hollow silica nanoparticles. Colloids Surf A 415:22–30

    Article  Google Scholar 

  38. Ballauff M (2003) Nanoscopic polymer particles with a well-defined surface: synthesis, characterization, and properties. Macromol Chem Phys 204(2):220–234

    Article  Google Scholar 

  39. Dingenouts N, Norhausen C, Ballauff M (1998) Observation of the volume transition in thermosensitive core–shell latex particles by small-angle X-ray scattering. Macromolecules 31(25):8912–8917

    Article  Google Scholar 

  40. Seelenmeyer S, Deike I, Rosenfeldt S, Norhausen C, Dingenouts N, Ballauff M, Narayanan T, Lindner P (2001) Small-angle x-ray and neutron scattering studies of the volume phase transition in thermosensitive core–shell colloids. J Chem Phys 114(23):10471–10478

    Article  Google Scholar 

  41. Wang W, Li L, Han H, Tian Y, Zhou Z, Guo X (2015) Tunable immobilization of protein in anionic spherical polyelectrolyte brushes as observed by small-angle X-ray scattering. Colloid Polym Sci 293(10):2789–2798

    Article  Google Scholar 

  42. Ballauff M (2007) Spherical polyelectrolyte brushes. Prog Polym Sci 32(10):1135–1151

    Article  Google Scholar 

  43. Pedersen JS, Gerstenberg MC (1996) Scattering Form Factor of Block Copolymer Micelles. Macromolecules 29(4):1363–1365

    Article  Google Scholar 

  44. Rosenfeldt S, Wittemann A, Ballauff M, Breininger E, Bolze J, Dingenouts N (2004) Interaction of proteins with spherical polyelectrolyte brushes in solution as studied by small-angle x-ray scattering. Phys Rev E 70(6 Pt 1):061403

    Article  Google Scholar 

  45. Dingenouts N, Bolze J, Potschke D, Ballauff M (1999) Analysis of polymer latexes by small-angle X-ray scattering. Polym Latexes Epoxide Resins Polyampholytes 144:1–47

    Article  Google Scholar 

  46. Henzler K, Rosenfeldt S, Wittemann A, Harnau L, Finet S, Narayanan T, Ballauff M (2008) Directed motion of proteins along tethered polyelectrolytes. Phys Rev Lett 100(15):158301

    Article  Google Scholar 

  47. Henzler K, Wittemann A, Breininger E, Ballauff M, Rosenfeldt S (2007) Adsorption of bovine hemoglobin onto spherical polyelectrolyte brushes monitored by small-angle X-ray scattering and Fourier transform infrared spectroscopy. Biomacromol 8(11):3674–3681

    Article  Google Scholar 

  48. Guo X, Ballauff M (2000) Spatial dimensions of colloidal polyelectrolyte brushes as determined by dynamic light scattering. Langmuir 16(23):8719–8726

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank the financial support from the NSFC Grants (51273063 and 21476143), the Fundamental Research Funds for the Central Universities, 111 Project Grant (B08021), Shanghai Synchrotron Radiation Facility, and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Li or Xuhong Guo.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Li, L., Yang, Q. et al. Characterization of hollow silica–polyelectrolyte composite nanoparticles by small-angle X-ray scattering. J Mater Sci 53, 3210–3224 (2018). https://doi.org/10.1007/s10853-017-1747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1747-5

Keywords

Navigation