Journal of Materials Science

, Volume 53, Issue 5, pp 3210–3224 | Cite as

Characterization of hollow silica–polyelectrolyte composite nanoparticles by small-angle X-ray scattering

  • Haoya Han
  • Li LiEmail author
  • Qingsong Yang
  • Yuchuan Tian
  • Yunwei Wang
  • Zhishuang Ye
  • Regine von Klitzing
  • Xuhong GuoEmail author


Hollow silica–polyelectrolyte composite nanoparticles were prepared using templates of spherical polyelectrolyte brushes which consist of a polystyrene (PS) core and a densely grafted linear poly(acrylic acid) shell. The obtained hollow particles were systematically studied by small-angle X-ray scattering (SAXS) in combination with other characterization methods such as transmission electron microscopy and dynamic light scattering. The hollow structure formed by dissolving the PS core was confirmed by the reduction of electron density to zero in the cavity through fitting SAXS data. SAXS revealed both the inward and outward expansions of the hollow silica–polyelectrolyte composite particles upon increasing pH from 3 to 9, while further increasing pH led to the partial dissolution of silica layer and even destruction of the hollow structure. SAXS was confirmed to be a unique and powerful characterization method to observe hollow silica nanoparticles, which should be ideal candidates for controlled drug delivery.



We gratefully thank the financial support from the NSFC Grants (51273063 and 21476143), the Fundamental Research Funds for the Central Universities, 111 Project Grant (B08021), Shanghai Synchrotron Radiation Facility, and the China Scholarship Council.

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.


  1. 1.
    Hu J, Chen M, Fang X, Wu L (2011) Fabrication and application of inorganic hollow spheres. Chem Soc Rev 40(11):5472–5491CrossRefGoogle Scholar
  2. 2.
    Zhao Y, Jiang L (2009) Hollow micro/nanomaterials with multilevel interior structures. Adv Mater 21(36):3621–3638CrossRefGoogle Scholar
  3. 3.
    Si Y, Chen M, Wu L (2016) Syntheses and biomedical applications of hollow micro-/nano-spheres with large-through-holes. Chem Soc Rev 45(3):690–714CrossRefGoogle Scholar
  4. 4.
    Li Y, Shi J (2014) Hollow-structured mesoporous materials: chemical synthesis: functionalization and applications. Adv Mater 26(20):3176–3205CrossRefGoogle Scholar
  5. 5.
    Podsiadlo P, Kwon SG, Koo B, Lee B, Prakapenka VB, Dera P, Zhuravlev KK, Krylova G, Shevchenko EV (2013) How “Hollow” are hollow nanoparticles? J Am Chem Soc 135(7):2435–2438CrossRefGoogle Scholar
  6. 6.
    Khanal A, Inoue Y, Yada M, Nakashima K (2007) Synthesis of Silica Hollow Nanoparticles Templated by Polymeric Micelle with Core–Shell–Corona Structure. J Am Chem Soc 129(6):1534–1535CrossRefGoogle Scholar
  7. 7.
    Tang F, Li L, Chen D (2012) Mesoporous Silica Nanoparticles: synthesis biocompatibility and drug delivery. Adv Mater 24(12):1504–1534CrossRefGoogle Scholar
  8. 8.
    Zhu Y, Shi J, Shen W, Dong X, Feng J, Ruan M, Li Y (2005) Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem 117(32):5213–5217CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Hsu BYW, Ren C, Li X, Wang J (2015) Silica-based nanocapsules: synthesis, structure control and biomedical applications. Chem Soc Rev 44(1):315–335CrossRefGoogle Scholar
  10. 10.
    Park C, Oh K, Lee SC, Kim C (2007) Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. Angew Chem Int Ed 46(9):1455–1457CrossRefGoogle Scholar
  11. 11.
    Guerrero-Martinez A, Perez-Juste J, Liz-Marzan LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater 22(11):1182–1195CrossRefGoogle Scholar
  12. 12.
    Cao SS, Zhang Y, Zhou LL, Chen JR, Fang L, Fei D, Zhu HJ, Ge Y (2014) Stimuli-responsive controlled release and molecular transport from hierarchical hollow silica/polyelectrolyte multilayer formulations. J Mater Chem B 2(41):7243–7249CrossRefGoogle Scholar
  13. 13.
    Amstad E, Reimhult E (2012) Nanoparticle actuated hollow drug delivery vehicles. Nanomedicine 7(1):145–164CrossRefGoogle Scholar
  14. 14.
    Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20(21):3987–4019CrossRefGoogle Scholar
  15. 15.
    Wang Y, Wang J, Han H, Liu J, Zhao H, Shen M, Xu Y, Xu J, Li L, Guo X (2016) Self-assembled micelles of N-phthaloylchitosan-g-poly (N-vinylcaprolactam) for temperature-triggered non-steroidal anti-inflammatory drug delivery. J Mater Sci 51(3):1591–1599. doi: 10.1007/s10853-015-9482-2 CrossRefGoogle Scholar
  16. 16.
    Caruso F, Caruso RA, Mohwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282(5391):1111–1114CrossRefGoogle Scholar
  17. 17.
    Chen M, Wu LM, Zhou SX, You B (2006) A method for the fabrication of monodisperse hollow silica spheres. Adv Mater 18(6):801–806CrossRefGoogle Scholar
  18. 18.
    Deng ZW, Chen M, Zhou SX, You B, Wu LM (2006) A novel method for the fabrication of monodisperse hollow silica spheres. Langmuir 22(14):6403–6407CrossRefGoogle Scholar
  19. 19.
    Tissot I, Novat C, Lefebvre F, Bourgeat-Lami E (2001) Hybrid latex particles coated with silica. Macromolecules 34(17):5737–5739CrossRefGoogle Scholar
  20. 20.
    Han L, Che SN (2013) Anionic surfactant templated mesoporous silicas (AMSs). Chem Soc Rev 42(9):3740–3752CrossRefGoogle Scholar
  21. 21.
    Zou H, Wu SS, Ran QP, Shen J (2008) A simple and low-cost method for the preparation of monodisperse hollow silica spheres. J Phys Chem C 112(31):11623–11629CrossRefGoogle Scholar
  22. 22.
    Chen KM, Zhu Y, Li L, Lu Y, Guo XH (2010) Recyclable spherical polyelectrolyte brushes containing magnetic nanoparticles in core. Macromol Rapid Commun 31(16):1440–1443CrossRefGoogle Scholar
  23. 23.
    Balmer JA, Mykhaylyk OO, Armes SP, Fairclough JPA, Ryan AJ, Gummel J, Murray MW, Murray KA, Wiliams NSJ (2011) Time-Resolved Small-Angle X-ray Scattering Studies of Polymer-Silica Nanocomposite Particles: initial Formation and Subsequent Silica Redistribution. J Am Chem Soc 133(4):826–837CrossRefGoogle Scholar
  24. 24.
    Grunder R, Urban G, Ballauff M (1993) Small-angle X-ray-analysis of latex-particles with core-shell morphology. Colloid Polym Sci 271(6):563–572CrossRefGoogle Scholar
  25. 25.
    Ballauff M, Bolze J, Dingenouts N, Hickl P, Pötschke D (1996) Small-angle X-ray scattering on latexes. Macromol Chem Phys 197(10):3043–3066CrossRefGoogle Scholar
  26. 26.
    Ballauff M (2011) Analysis of polymer colloids by small-angle X-ray and neutron scattering: contrast variation. Adv Eng Mater 13(8):793–802CrossRefGoogle Scholar
  27. 27.
    Dingenouts N, Bolze J, Pötschke D, Ballauff M (1999) Analysis of polymer latexes by small-angle X-ray scattering. In: Polymer latexes—epoxide resins—polyampholytes. Springer, Berlin, pp 1–47. doi: 10.1007/3-540-68384-4_1
  28. 28.
    Wang W, Li L, Henzler K, Lu Y, Wang J, Han H, Tian Y, Wang Y, Zhou Z, Lotze G, Narayanan T, Ballauff M, Guo X (2017) Protein immobilization onto cationic spherical polyelectrolyte brushes studied by small angle X-ray scattering. Biomacromol 18(5):1574–1581CrossRefGoogle Scholar
  29. 29.
    Wang W, Li L, Yu X, Han H, Guo X (2014) Distribution of magnetic nanoparticles in spherical polyelectrolyte brushes as observed by small-angle X-ray scattering. J Polym Sci Part B: Polym Phys 52(24):1681–1688CrossRefGoogle Scholar
  30. 30.
    Wang W, Chu F, Li L, Han H, Tian Y, Wang Y, Yuan Z, Zhou Z, Guo X (2016) Interactions among spherical poly(acrylic acid) brushes: observation by rheology and small angle X-ray scattering. J Polym Sci Part B: Polym Phys 54(3):405–413CrossRefGoogle Scholar
  31. 31.
    Wang S, Chen K, Xu Y, Yu X, Wang W, Li L, Guo X (2013) Protein immobilization and separation using anionic/cationic spherical polyelectrolyte brushes based on charge anisotropy. Soft Matter 9(47):11276–11287CrossRefGoogle Scholar
  32. 32.
    Tian Y, Li L, Han H, Wang W, Wang Y, Ye Z, Guo X (2016) Modification of spherical polyelectrolyte brushes by layer-by-layer self-assembly as observed by small angle X-ray scattering. Polymers 8(4):145CrossRefGoogle Scholar
  33. 33.
    de Robillard Q, Guo X, Ballauff M, Narayanan T (2000) Spatial correlation of spherical polyelectrolyte brushes in salt-free solution as observed by small-angle X-ray scattering. Macromolecules 33(24):9109–9114CrossRefGoogle Scholar
  34. 34.
    Ruckdeschel P, Dulle M, Honold T, Forster S, Karg M, Retsch M (2016) Monodisperse hollow silica spheres: an in-depth scattering analysis. Nano Res 9(5):1366–1376CrossRefGoogle Scholar
  35. 35.
    Chen ZH, Kim C, Zeng XB, Hwang SH, Jang J, Ungar G (2012) Characterizing size and porosity of hollow nanoparticles: SAXS, SANS, TEM, DLS, and adsorption isotherms compared. Langmuir 28(43):15350–15361CrossRefGoogle Scholar
  36. 36.
    Guo X, Weiss A, Ballauff M (1999) Synthesis of spherical polyelectrolyte brushes by photoemulsion polymerization. Macromolecules 32(19):6043–6046CrossRefGoogle Scholar
  37. 37.
    Huang SB, Yu XJ, Dong YM, Li L, Guo XH (2012) Spherical polyelectrolyte brushes: ideal templates for preparing pH-sensitive core-shell and hollow silica nanoparticles. Colloids Surf A 415:22–30CrossRefGoogle Scholar
  38. 38.
    Ballauff M (2003) Nanoscopic polymer particles with a well-defined surface: synthesis, characterization, and properties. Macromol Chem Phys 204(2):220–234CrossRefGoogle Scholar
  39. 39.
    Dingenouts N, Norhausen C, Ballauff M (1998) Observation of the volume transition in thermosensitive core–shell latex particles by small-angle X-ray scattering. Macromolecules 31(25):8912–8917CrossRefGoogle Scholar
  40. 40.
    Seelenmeyer S, Deike I, Rosenfeldt S, Norhausen C, Dingenouts N, Ballauff M, Narayanan T, Lindner P (2001) Small-angle x-ray and neutron scattering studies of the volume phase transition in thermosensitive core–shell colloids. J Chem Phys 114(23):10471–10478CrossRefGoogle Scholar
  41. 41.
    Wang W, Li L, Han H, Tian Y, Zhou Z, Guo X (2015) Tunable immobilization of protein in anionic spherical polyelectrolyte brushes as observed by small-angle X-ray scattering. Colloid Polym Sci 293(10):2789–2798CrossRefGoogle Scholar
  42. 42.
    Ballauff M (2007) Spherical polyelectrolyte brushes. Prog Polym Sci 32(10):1135–1151CrossRefGoogle Scholar
  43. 43.
    Pedersen JS, Gerstenberg MC (1996) Scattering Form Factor of Block Copolymer Micelles. Macromolecules 29(4):1363–1365CrossRefGoogle Scholar
  44. 44.
    Rosenfeldt S, Wittemann A, Ballauff M, Breininger E, Bolze J, Dingenouts N (2004) Interaction of proteins with spherical polyelectrolyte brushes in solution as studied by small-angle x-ray scattering. Phys Rev E 70(6 Pt 1):061403CrossRefGoogle Scholar
  45. 45.
    Dingenouts N, Bolze J, Potschke D, Ballauff M (1999) Analysis of polymer latexes by small-angle X-ray scattering. Polym Latexes Epoxide Resins Polyampholytes 144:1–47CrossRefGoogle Scholar
  46. 46.
    Henzler K, Rosenfeldt S, Wittemann A, Harnau L, Finet S, Narayanan T, Ballauff M (2008) Directed motion of proteins along tethered polyelectrolytes. Phys Rev Lett 100(15):158301CrossRefGoogle Scholar
  47. 47.
    Henzler K, Wittemann A, Breininger E, Ballauff M, Rosenfeldt S (2007) Adsorption of bovine hemoglobin onto spherical polyelectrolyte brushes monitored by small-angle X-ray scattering and Fourier transform infrared spectroscopy. Biomacromol 8(11):3674–3681CrossRefGoogle Scholar
  48. 48.
    Guo X, Ballauff M (2000) Spatial dimensions of colloidal polyelectrolyte brushes as determined by dynamic light scattering. Langmuir 16(23):8719–8726CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Department of PhysicsTechnical University DarmstadtDarmstadtGermany
  3. 3.Engineering Research Center of Materials Chemical Engineering of Xinjiang BingtuanShihezi UniversityXinjiangPeople’s Republic of China

Personalised recommendations