Skip to main content

Advertisement

Log in

Tuning size of MoS2 in MoS2/graphene oxide heterostructures for enhanced photocatalytic hydrogen evolution

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nano-sized materials have attracted tremendous attentions because of their promising practical applications and theoretical values. The nano-sized materials are able to not only enhance the intrinsic properties of their bulk counterparts but also give birth to new promising properties. Herein, heterojunctions consisted of graphene oxide (GO) and three different MoS2 nanostructures, including nanoflowers, nanoparticles, and quantum dots, were constructed and used as photocatalysts in water splitting. The electrochemical behavior and photocatalytic performance of MoS2/GO composites were found closely related to the particle size and morphology of MoS2. Compared to bulk MoS2/GO photocatalyst, nano-sized MoS2/GO heterostructures exhibited obviously enhanced performance in photocatalytic hydrogen generation. Benefitting from the surface effect and the quantum confinement in MoS2 quantum dots, MoS2 quantum dots/GO displayed the highest photocatalytic activities. This study indicates that the decrease in the dimension of MoS2 can effectively increase the photocatalytic hydrogen evolution performance of MoS2/GO heterostructures, and thus suggests preferred strategy to design other HER photocatalysts based on MoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578

    Article  Google Scholar 

  2. Xiang Q, Yu J (2013) Graphene-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 4:753–759

    Article  Google Scholar 

  3. Zhang R, Wan W, Li D, Dong F, Zhou Y (2017) Three-dimensional MoS2/reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst. Chinese J. Catal. 38:313–320

    Article  Google Scholar 

  4. Fujishina A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–41

    Article  Google Scholar 

  5. Zhang J, Sun J, Maed K, Domen K, Liu P, Antonietti M, Fu X, Wang X (2011) Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ Sci 4:675–678

    Article  Google Scholar 

  6. Yuan Q, Liu D, Zhang N, Ye W, Ju H, Shi L, Long R, Zhu J, Xiong Y (2017) Noble-metal-free Janus-like structures by cation exchange for z-scheme photocatalytic water splitting under lroadband bight irradiation. Angew Chem Int Ed 56:1–6

    Article  Google Scholar 

  7. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299

    Article  Google Scholar 

  8. Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR (2011) Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc 133:10878–10884

    Article  Google Scholar 

  9. Gao J, Liang G, Zhang B, Kuang Y, Zhang X, Xu B (2007) FePt@CoS2 yolk − shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc 129:1428–1433

    Article  Google Scholar 

  10. Wang M, Ju P, Li W, Zhao Y, Han X (2017) Ag2S nanoparticle-decorated MoS2 for enhanced electrocatalytic and photoelectrocatalytic activity in water splitting. Dalton Trans 46:483–490

    Article  Google Scholar 

  11. Chen L, He F, Zhao N, Guo R (2017) Fabrication of 3D quasi-hierarchical Z-scheme RGO-Fe2O3-MoS2 nanoheterostructures for highly enhanced visible-light-driven photocatalytic degradation. Appl Surf Sci 420:669–680

    Article  Google Scholar 

  12. Wang Y, Sun M, Fang Y, Sun S, He J (2016) Ag2S and MoS2 as dual, co-catalysts for enhanced photocatalytic degradation of organic pollutions over CdS. J Mater Sci 2:779–787. doi:10.1007/s10853-015-9401-6

    Article  Google Scholar 

  13. Hong X, Kim J, Shi S, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F (2014) Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nanotechnol 9:682–686

    Article  Google Scholar 

  14. Jiang W, Liu Y, Zong R, Li Z, Yao W, Zhu Y (2015) Photocatalytic hydrogen generation on bifunctional ternary heterostructured In2S3/MoS2/CdS composites with high activity and stability under visible light irradiation. J. Mater. Chem. A 3:18406–18412

    Article  Google Scholar 

  15. Zhang J, Zhu Z, Feng X (2014) Construction of two-dimensional MoS2/CdS p–n nanohybrids for highly efficient photocatalytic hydrogen evolution. Chem Eur J 20:10632–10635

    Article  Google Scholar 

  16. Zhao Y, Zhang X, Wang C, Zhao Y, Zhou H, Li J, Jin H (2017) The synthesis of hierarchical nanostructured MoS2/Graphene composites with enhanced visible-light photo-degradation property. Appl Surf Sci 412:207–213

    Article  Google Scholar 

  17. Lv H, Liu Y, Tang H, Zhang P, Wang J (2017) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic activity of BiPO4 nanoparticles. Appl Surf Sci 425:100–106

    Article  Google Scholar 

  18. Hou Y, Laursen AB, Zhang J, Zhang G, Zhu Y, Wang X, Dahl S, Chorkendorff I (2013) Layered nanojunctions for hydrogen-evolution catalysis. Angew Chem Int Ed 52:1–5

    Article  Google Scholar 

  19. Hou Y, Wen Z, Cui S, Guo X, Chen J (2013) Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv Mater 25:6291–6297

    Article  Google Scholar 

  20. Liu P, Zhang L, Liu G, Cheng H (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770

    Article  Google Scholar 

  21. Tributsch H, Bennett JC (1977) Electrochemistry and photochemistry of MoS2 layer crystals. J Electroanal Chem 81:97–111

    Article  Google Scholar 

  22. Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 Evolution from MoS2 nanocatalysts. Science 317:100–102

    Article  Google Scholar 

  23. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309

    Article  Google Scholar 

  24. Chang K, Mei Z, Wang T, Kang Q, Ouyang S, Ye J (2014) MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light Irradiation. ACS Nano 8:7078–7087

    Article  Google Scholar 

  25. Gopalakrishnan D, Damien D, Shaijumon MM (2014) MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano 8:5297–5303

    Article  Google Scholar 

  26. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  27. Li F, Li J, Cao Z, Lin X, Li X, Fang Y, An X, Fu Y, Jin J, Li R (2015) MoS2 quantum dot decorated RGO: a designed electrocatalyst with high active site density for the hydrogen evolution reaction. J. Mater. Chem. A 3:21772–21778

    Article  Google Scholar 

  28. Ma C, Qi X, Chen B, Bao S, Yin Z, Wu X, Luo Z, Wei J, Zhang H, Zhang H (2014) MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale 6:5624–5629

    Article  Google Scholar 

  29. Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X, Zhang X (2015) Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and Multiphoton bioimaging. Small 11:415–41648

    Google Scholar 

  30. Xu Y, Yang M, Chen B, Wang X, Chen H, Kuang D, Su C (2017) A CsPbBr 3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 Reduction. J Am Chem Soc 16:5660–5660

    Article  Google Scholar 

  31. Liu C, Kong D, Hsu P, Yuan H, Lee H, Liu Y, Wang H, Wang S, Yan K, Lin D, Maraccini PA, Parker KM, Boehm AB, Cui Y (2016) Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat Nanotechnol 11:1098–1106

    Google Scholar 

  32. Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3:2485–2534

    Article  Google Scholar 

  33. Oh I, Kye J, Hwang S (2012) Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett 12:298–302

    Article  Google Scholar 

  34. Oh J, Deutsch TG, Yuan H, Branz HM (2011) Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting. Energy Environ Sci 4:1690–1694

    Article  Google Scholar 

  35. Sim U, Yang T, Moon J, An J, Hwang J, Seo J, Lee J, Kim KY, Lee J, Han S, Hong BH, Nam KT (2013) N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy Environ Sci 6:3658–3664

    Article  Google Scholar 

  36. Yang S, Gong Y, Zhang J, Zhan L, Ma L, Fang Z, Vajtai R, Wang X, Ajayan PM (2013) Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv Mater 25:2452–2456

    Article  Google Scholar 

  37. Xu S, Li D, Wu P (2015) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25:1127–1136

    Article  Google Scholar 

  38. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013) Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 135:18–21

    Article  Google Scholar 

  39. Alicisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 371:933–937

    Article  Google Scholar 

  40. Liu G, Niu P, Wang L, Lu GQ, Cheng H (2011) Achieving maximum photo-oxidation reactivity of Cs0.68Ti1.83O4−xNx photocatalysts through valence band fine-tuning. Catal. Sci. Technol. 1:222–225

    Google Scholar 

  41. Liu G, Sun C, Yang HG, Smith SC, Wang L, Lu GQ, Cheng H (2010) Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem Commun 46:755–757

    Article  Google Scholar 

  42. Pan J, Liu G, Lu G, Cheng QH (2011) On the true photoreactivity order of 001}, {010}, and {101 facets of anatase TiO2 crystals. Angew Chem Int Ed 50:2133–2137

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61376066, 51702328, and 21401203), CAS “Light of West China” Program, and Natural Science Foundation of Shandong Province, China (Grant No. ZR2017BD002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuxun Han or Peng Ju.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Cyclic voltammograms of the obtained MoS2/GO heterostructures (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Han, X., Zhao, Y. et al. Tuning size of MoS2 in MoS2/graphene oxide heterostructures for enhanced photocatalytic hydrogen evolution. J Mater Sci 53, 3603–3612 (2018). https://doi.org/10.1007/s10853-017-1745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1745-7

Keywords

Navigation