Journal of Materials Science

, Volume 53, Issue 4, pp 2594–2603 | Cite as

Chemical grafting of nano-TiO2 onto carbon fiber via thiol–ene click chemistry and its effect on the interfacial and mechanical properties of carbon fiber/epoxy composites

  • Lei Xiong
  • Feng Zhan
  • Hongbo Liang
  • Liang Chen
  • Daosong Lan


The interface in carbon fiber (CF)-reinforced polymer composites plays an important role in determining the mechanical properties of composites. In order to improve the interfacial adhesion between the carbon fiber and resin matrix, we presented a facile and rapid method for grafting nano-sized titanium dioxide (nano-TiO2) onto the CF surface by means of thiol–ene click chemistry under UV irradiation. Experimental results demonstrate that the chemical bonds are formed between the CF and nano-TiO2. The introduction of nano-TiO2 significantly enhances the surface energy of fiber and increases the wettability and mechanical interlocking between fiber and resin, resulting in a significant increase in the interfacial properties of composites. Compared to the raw CF/epoxy composites, the composites reinforced by the CF grafted with nano-TiO2 show an improvement of 78% in the interfacial shear strength. Moreover, the results of the mechanical properties tests reveal that the flexural strength and tensile strength of composites increase by 32.3 and 39.6% after grafting with nano-TiO2.



The authors gratefully acknowledge support from the National Natural Science Foundation of China (No. 51463017), Science Foundation of Aeronautics of China (No. 2016ZF56022) and Natural Science Foundation of Jiangxi Province (20171BAB206019 and 20171BAB216002).


  1. 1.
    Chand S (2000) Review carbon fibers for composites. J Mater Sci 35(6):1303–1313. doi: 10.1023/A:1004780301489 CrossRefGoogle Scholar
  2. 2.
    Feng Q, Cong WL, Pei ZJ, Ren CZ (2012) Rotary ultrasonic machining of carbon fiber-reinforced polymer: feasibility study. Mach Sci Technol 16(3):380–398CrossRefGoogle Scholar
  3. 3.
    Yao Y, Wang T, Gong Y, Gan L, Peng X, Wan Z (2016) Development of a carbon fiber reinforced composite chassis longitudinal arm. Sci Adv Mater 8(11):2133–2141CrossRefGoogle Scholar
  4. 4.
    Paiva MC, Bernardo CA, Nardin M (2000) Mechanical, surface and interfacial characterisation of pitch and pan-based carbon fibres. Carbon 38(9):1323–1337CrossRefGoogle Scholar
  5. 5.
    Schultz J, Lavielle L, Martin C (1987) The role of the interface in carbon fibre–epoxy composites. J Adhesion 23(1):45–60CrossRefGoogle Scholar
  6. 6.
    Hashin Z (2002) Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J Mech Phys Solids 50(12):2509–2537CrossRefGoogle Scholar
  7. 7.
    Guessasma S, Bassir D, Hedjazi L (2015) Influence of interphase properties on the effective behaviour of a starch–hemp composite. Mater Design 65:1053–1063CrossRefGoogle Scholar
  8. 8.
    Hughes JDH (1991) The carbon fibre/epoxy interface—a review. Compos Sci Technol 41(1):13–45CrossRefGoogle Scholar
  9. 9.
    Tang LG, Kardos JL (1997) A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix. Polym Compos 18(1):100–113CrossRefGoogle Scholar
  10. 10.
    Jiang J, Yao X, Xu C, Su Y, Zhou L, Deng C (2017) Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites. Compos Part A 95:248–256CrossRefGoogle Scholar
  11. 11.
    Rjafiallah S, Guessasma S, Lourdin D (2009) Effective properties of biopolymer composites: a three-phase finite element model. Compos Part A 40(2):130–136CrossRefGoogle Scholar
  12. 12.
    Liu J, Tian Y, Chen Y, Liang J (2010) Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution. Appl Surf Sci 256(21):6199–6204CrossRefGoogle Scholar
  13. 13.
    Jiang S, Li QF, Zhao YH, Wang JW, Kang MQ (2015) Effect of surface silanization of carbon fiber on mechanical properties of carbon fiber reinforced polyurethane composites. Compos Sci Technol 110:87–94CrossRefGoogle Scholar
  14. 14.
    Ma L, Meng L, Fan D, He J, Yu J, Qi M, Chen Z, Huang Y (2014) Interfacial enhancement of carbon fiber composites by generation 1–3 dendritic hexamethylenetetramine functionalization. Appl Surf Sci 296(8):61–68CrossRefGoogle Scholar
  15. 15.
    Zhang X, Fan X, Yan C, Li H, Zhu Y, Li X, Yu L (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl Mater Interfaces 4(3):1543–1552CrossRefGoogle Scholar
  16. 16.
    Hbib M, Guessasma S, Bassir D, Benseddiq N (2011) Interfacial damage in biopolymer composites reinforced using hemp fibres: finite element simulation and experimental investigation. Compos Sci Technol 71(11):1419–1426CrossRefGoogle Scholar
  17. 17.
    Vivet A, Leclerc W, Doudou BB, Chen J, Poilâne C (2015) Improvement by nanofibers of load transfer in carbon fiber reinforced composites. Fibers 3(2):134–150CrossRefGoogle Scholar
  18. 18.
    Yang Y, Lv CX, Wang XK, Liu HP, He F, Li YH, Song Y (2005) Effects of nano-SiO2 modified emulsion sizing on the interfacial performance of carbon fiber reinforced plastics. New Carbon Mater 20(3):211–216Google Scholar
  19. 19.
    Kepple KL, Sanborn GP, Lacasse PA, Gruenberg KM, Ready WJ (2008) Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon 46(15):2026–2033CrossRefGoogle Scholar
  20. 20.
    Gao B, Zhang R, He M, Sun L, Wang C, Liu L, Zhao L, Cui H, Cao A (2016) Effect of a multiscale reinforcement by carbon fiber surface treatment with graphene oxide/carbon nanotubes on the mechanical properties of reinforced carbon/carbon composites. Compos Part A 90:433–440CrossRefGoogle Scholar
  21. 21.
    Zang Z, Tang G, Wang D, Wei G, Wu G, Huang W, Mi W, Wen D (2012) The deposition of TiO2 on the mechanical properties of carbon fiber-reinforced LDPE composite. Polym Plast Technol 51(9):873–877CrossRefGoogle Scholar
  22. 22.
    He X, Zhang F, Wang R, Liu W (2007) Preparation of a carbon nanotube/carbon fiber multi-scale reinforcement by grafting multi-walled carbon nanotubes onto the fibers. Carbon 45(13):2559–2563CrossRefGoogle Scholar
  23. 23.
    Al-Turaif HA (2010) Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Prog Org Coat 69(3):241–246CrossRefGoogle Scholar
  24. 24.
    Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ (2011) Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res 141(1–3):3–15CrossRefGoogle Scholar
  25. 25.
    Laachachi A, Vivet A, Nouet G, Doudou BB, Poilâne C, Chen J, Bai JB, Ayachi MH (2008) A chemical method to graft carbon nanotubes onto a carbon fiber. Mater Lett 62(3):394–397CrossRefGoogle Scholar
  26. 26.
    Hashishin T, Murashita J, Joyama A, Kaneko Y (1998) Oxidation-resistant coating of carbon fibers with TiO2 by sol–gel method. J Ceram Soc Jpn 106(1229):1–5CrossRefGoogle Scholar
  27. 27.
    Rui W, Wan Y, Fang H, Yu Q, Wei Y, Luo H (2012) The synthesis of a new kind of magnetic coating on carbon fibers by electrodeposition. Appl Surf Sci 258(7):3007–3011CrossRefGoogle Scholar
  28. 28.
    Shen A, Guo Z, Yu L, Cao L, Liang X (2011) A novel zwitterionic HILIC stationary phase based on “thiol–ene” click chemistry between cysteine and vinyl silica. Chem Commun 47(15):4550–4552CrossRefGoogle Scholar
  29. 29.
    Li YH, Wang D, Buriak JM (2010) Molecular layer deposition of thiol–ene multilayers on semiconductor surfaces. Langmuir 26(2):1232–1238CrossRefGoogle Scholar
  30. 30.
    Hoyle CE, Bowman CN (2010) Thiol–ene click chemistry. Angew Chem Int Edit 49(9):1540–1573CrossRefGoogle Scholar
  31. 31.
    Khire VS, Harant AW, Watkins AW, Anseth KS, Bowman CN (2006) Ultrathin patterned polymer films on surfaces using thiol–ene polymerizations. Macromolecules 39(15):5081–5086CrossRefGoogle Scholar
  32. 32.
    Xiong L, Lian Z, Liang H, Li X, Huang S (2013) Influence of hyperbranched poly(2-(2-bromopropionyloxy)ethyl acrylate)-modified TiO2 nanoparticles on the properties of epoxy resin nanocomposites. Polym Plast Technol 52(9):900–906CrossRefGoogle Scholar
  33. 33.
    Xiong L, Qin X, Liang H, Huang S, Lian Z (2017) Covalent functionalization of carbon fiber with poly(acrylamide) by reversible addition-fragmentation chain transfer polymerization for improving carbon fiber/epoxy interface. Polym Compos 38(1):27–31CrossRefGoogle Scholar
  34. 34.
    López T, Ortiz E, Gómez R, Picquart M (2006) Amorphous sol–gel titania modified with heteropolyacids. J Sol Gel Sci Technol 37(3):189–193CrossRefGoogle Scholar
  35. 35.
    Giulidori C, Mosconi N, Toplikar B, Vega M, Williams P, Svetaz L, Raimondi M, Rizzotto M (2016) Heteroleptic complexes of antifungal drugs with the silver ion. J Phys Org Chem 29(11):656–664CrossRefGoogle Scholar
  36. 36.
    Li M, Lu B, Ke QF, Guo YJ, Guo YP (2017) Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal. J Hazard Mater 333:88–98CrossRefGoogle Scholar
  37. 37.
    Qian H, Bismarck A, Greenhalgh ES, Shaffer MSP (2010) Carbon nanotube grafted carbon fibres: a study of wetting and fibre fragmentation. Compos Part A 41(9):1107–1114CrossRefGoogle Scholar
  38. 38.
    Peng Q, He X, Li Y, Wang C, Wang R, Hu PA, Yan Y, Sritharan T (2012) Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites. J Mater Chem 22(13):5928–5931CrossRefGoogle Scholar
  39. 39.
    Qian J, Wu J, Liu X, Zhuang Q, Han Z (2012) Improvement of interfacial shear strengths of polybenzobisoxazole fiber/epoxy resin composite by n-TiO2 coating. J Appl Polym Sci 127(4):2990–2995CrossRefGoogle Scholar
  40. 40.
    Hui X, You L, Cheng Y (2015) Properties of nano-TiO2 reinforced T700 CF/E composites. Aerosp Mater Technol 45(3):39–41Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lei Xiong
    • 1
  • Feng Zhan
    • 1
  • Hongbo Liang
    • 1
  • Liang Chen
    • 1
  • Daosong Lan
    • 1
  1. 1.School of Materials Science and EngineeringNanchang Hangkong UniversityNanchangChina

Personalised recommendations