Skip to main content
Log in

Fabrication of lead-free piezoelectric (Bi0.5Na0.5)TiO3–BaTiO3 ceramics using electrophoretic deposition

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrophoretic deposition (EPD) process has certain advantages such as it can be applied for a mass production and also can be combined with magnetic crystal alignment technique. In this work, we prepared lead-free 85(Bi0.5Na0.5)TiO3–15BaTiO3 (85BNT–15BT) piezoelectric ceramics by conventional uniaxial pressing and EPD process. Various conditions were optimized such as suspension media, applied electrical field, and deposition time in order to yield dense green ceramics of 85BNT–15BT composition using EPD process. 85BNT–15BT ceramics prepared using EPD process revealed the Curie temperature of about 250 °C, coercive field of about 30 kV/cm, and piezoelectric constant (d 33) of 75 pC/N. The EPD-processed samples exhibited structural and electrical properties similar to that of the conventionally processed one suggesting the successful fabrication of 85BNT–15BT piezoelectric ceramics by EPD method without composition deviation. This study lays a foundation on the fabrication of Bi-based lead-free piezoelectric ceramics by an alternative route other than the conventionally practiced solid-state reaction method maintaining the similar chemical composition, moreover, leaving a large space to explore more in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Springer, Berlin

    Google Scholar 

  2. Official Journal of the European Union (2003) Directive 2002/95/EC of European Parliament and of the Council of 27 January 2003. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:037:0019:0023:EN:PDF Accessed 29 June 2017

  3. Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys 30(9B):2236

    Article  Google Scholar 

  4. Sung YS, Kim JM, Cho JH, Song TK, Kim MH, Park TG (2010) Roles of lattice distortion in (1−x)(Bi0.5Na0.5)TiO3–xBaTiO3 ceramics. Appl Phys Lett 96:202901

    Article  Google Scholar 

  5. Xu C, Lin D, Kwok KW (2008) Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoelectric ceramics. Solid State Sci. 10(7):934–940

    Article  Google Scholar 

  6. PI Ceramic, Catalog: PI piezoelectric ceramic products. https://www.piceramic.com/en/products/piezoceramic-actuators/piezoelectric-crystal/. Accessed 29 June 2017

  7. Li J-F, Wang K, Zhu F-Y, Cheng L-Q, Yao F-Z (2013) (K, Na)NbO3-Based Lead-free piezoceramics: fundamentals aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96(12):3677–3696

    Article  Google Scholar 

  8. Lee MH et al (2015) High-performance lead-free piezoelectrics with high curie temperatures. Adv Mater 27(43):6976–6982

    Article  Google Scholar 

  9. Park S-E, Shrout TR (1997) Relaxor based ferroelectric single crystals for electromechanical actuators. Mater Res Innov 1(1):20–25

    Article  Google Scholar 

  10. Park S-E, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804

    Article  Google Scholar 

  11. Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T (2005) Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J Appl Phys 98:014109

    Article  Google Scholar 

  12. Wada S, Takeda K, Muraishi T, Kakemoto H, Tsurumi T, Kimura T (2007) Preparation of [110] grain orientation barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn J Appl Phys 46(10B):7039–7043

    Article  Google Scholar 

  13. Kobayashi E et al (2015) Fabrication of (111)-oriented tetragonal BaTiO3 Ceramics by an electrophoretic deposition in a high magnetic field. Trans Mater Res Soc Jpn 40(3):223–226

    Article  Google Scholar 

  14. Sugiyama T, Tahashi M, Sassa K, Asai S (2003) The control of crystal orientation in non-magnetic metals by imposition of a high magnetic field. ISIJ Int 43:855–861

    Article  Google Scholar 

  15. Watanabe T et al (2011) Structural transformation of hexagonal (0001)BaTiO3 ceramics to tetragonal (111)BaTiO3 ceramics. Jpn J Appl Phys 50(9S2):09ND01

    Article  Google Scholar 

  16. Matsuda M, Miyatake M, Umegaki T, Yamashita K (2004) Electrophoretic coagulation behavior of ferroelectric barium titanate powders in mixed solutions of alcohol and acetylacetone. J Mater Sci 39(13):4235–4238. doi:10.1023/B:JMSC.0000033404.14266.ef

    Article  Google Scholar 

  17. Vriami D, Damjanovic D, Vleugles J, Biest OV (2015) Textured BaTiO3 by templated grain growth and electrophoretic deposition. J Mater Sci 50(24):7896–7907. doi:10.1007/s10853-015-9322-4

    Article  Google Scholar 

  18. Okamura S, Tsukamoto T, Koura N (1993) Fabrication of ferroelectric BaTiO3 films by electrophoretic deposition. Jpn J Appl Phys 32(9B):4182–4185

    Article  Google Scholar 

  19. Mahajan A, Pinho R, Dolhen M, Costa ME, Vilarinho PM (2016) Unleashing the full sustainable potential of thick films of lead-free potassium sodium niobate (K0.5Na0.5NbO3) by aqueous electrophoretic deposition. Langmuir 32(21):5241–5249

    Article  Google Scholar 

  20. Dolhen M, Mahajan A, Pinho R, Costa ME, Trolliard G, Vilarinho PM (2015) Sodium potassium niobate (K0.5Na0.5NbO3, KNN) thick films by electrophoretic deposition. RSC Adv 5(6):4698–4706

    Article  Google Scholar 

  21. Doungdaw S, Uchikoshi T, Noguchi Y, Eamchotchawalit C, Sakka Y (2005) Electrophoretic deposition of lead zirconate titanate (PZT) powder from ethanol suspension prepared with phosphate ester. Sci Technol Adv Mater 6(8):927–932

    Article  Google Scholar 

  22. Zhitomirsky I (2002) Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. Adv Colloid Interface Sci 97(1–3):279–317

    Article  Google Scholar 

  23. Jordan TL, Ounaies Z (2001) Piezoelectric ceramics characterization, National Aeronautics and Space Administration (NASA). ICASE Report No. 2001-28

Download references

Acknowledgements

The authors would like to thank Nippon Chemical industrial and Sakai Chemical Industry Co., Ltd., for providing (Bi0.5Na0.5)TiO3 and BaTiO3 powders. The experiment at SPring-8 was carried out under Program No. 2016A1401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Wada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Ito, R., Kim, S. et al. Fabrication of lead-free piezoelectric (Bi0.5Na0.5)TiO3–BaTiO3 ceramics using electrophoretic deposition. J Mater Sci 53, 2396–2404 (2018). https://doi.org/10.1007/s10853-017-1717-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1717-y

Keywords

Navigation