Advertisement

Journal of Materials Science

, Volume 53, Issue 3, pp 2208–2220 | Cite as

Photoelectrochemical activity of electrospun WO3/NiWO4 nanofibers under visible light irradiation

  • Shaheen Fatima Anis
  • Boor Singh Lalia
  • Giovanni Palmisano
  • Raed Hashaikeh
Polymers

Abstract

Electrospun tungsten oxide/nickel tungstate (WO3/NiWO4) composite nanofibers were tested for photoelectrochemical (PEC) performance under visible light irradiation under three voltages, 1.6, 1.8 and 2.0 V with reference to Ag/AgCl electrode in 0.5 M H2SO4. It was found that the photocurrent density of this novel nanostructure fiber is about 70% higher than the pristine electrospun WO3 fibers under similar conditions. WO3/NiWO4 heterojunction was identified within the fiber through high-resolution transmission electron microscopy imaging. The fibrous form is expected to provide greater exposure to the WO3/NiWO4 heterojunctions for the photocatalytic reaction. This heterojunction within the fibrous form is expected to provide a higher photoanode performance due to a lower charge-transfer resistance than the pristine WO3 fibers as also confirmed through the electrochemical impedance spectra. Interestingly, calcination of these composite fibers at 800 °C instead at 550 °C increased the percentage of NiWO4 phase, yet with a contemporaneous increase in larger crystallites of metal tungstate. The latter was responsible for giving lower photocurrents which helped in understanding the PEC performance with respect to material structure for the composite fiber under the current study.

Notes

Acknowledgements

The authors would like to acknowledge Dr. Ahmad O. Mostafa from Masdar Institute of Science and Technology, Abu Dhabi, for extending his help for XRD analysis.

Funding

The authors are thankful to Takreer Research Centre (TRC), Abu Dhabi, for funding this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2017_1633_MOESM1_ESM.docx (104 kb)
Supplementary material 1 (DOCX 103 kb)

References

  1. 1.
    Ahmed MI, Adam A, Khan A, Siddiqui MN, Yamani ZH, Qamar M (2016) Synthesis of mesoporous NiWO4 nanocrystals for enhanced photoelectrochemical water oxidation. Mater Lett 177:135–138CrossRefGoogle Scholar
  2. 2.
    Lacomba-Perales R, Ruiz-Fuertes J, Errandonea D, Martínez-García D, Segura A (2008) Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius. EPL (Europhys Lett) 83:37002-1–37002-5CrossRefGoogle Scholar
  3. 3.
    Shi Y, Feng S, Cao C (2000) Hydrothermal synthesis and characterization of Bi2MoO6 and Bi2WO6. Mater Lett 44:215–218CrossRefGoogle Scholar
  4. 4.
    Yu SH, Liu B, Mo MS, Huang JH, Liu XM, Qian YT (2003) General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach. Adv Funct Mater 13:639–647CrossRefGoogle Scholar
  5. 5.
    Garcia-Perez U, Martinez-de La Cruz A, Peral J (2012) Transition metal tungstates synthesized by co-precipitation method: basic photocatalytic properties. Electrochim Acta 81:227–232CrossRefGoogle Scholar
  6. 6.
    Pullar RC, Farrah S, Alford NM (2007) MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J Eur Ceram Soc 27:1059–1063CrossRefGoogle Scholar
  7. 7.
    Mancheva MN, Iordanova RS, Klissurski DG, Tyuliev GT, Kunev BN (2007) Direct mechanochemical synthesis of nanocrystalline NiWO4. J Phys Chem C 111:1101–1104CrossRefGoogle Scholar
  8. 8.
    Bi Y, Nie H, Li D, Zeng S, Yang Q, Li M (2010) NiWO4 nanoparticles: a promising catalyst for hydrodesulfurization. Chem Commun 46:7430–7432CrossRefGoogle Scholar
  9. 9.
    Mohamed MM, Ahmed SA, Khairou KS (2014) Unprecedented high photocatalytic activity of nanocrystalline WO3/NiWO4 hetero-junction towards dye degradation: effect of template and synthesis conditions. Appl Catal B 150:63–73CrossRefGoogle Scholar
  10. 10.
    Talebi R (2016) Simple sonochemical synthesis and characterization of nickel tungstate nanoparticles and its photocatalyst application. J Mater Sci Mater Electron 27:3565–3569CrossRefGoogle Scholar
  11. 11.
    Zhu J, Li W, Li J, Li Y, Hu H, Yang Y (2013) Photoelectrochemical activity of NiWO4/WO3 heterojunction photoanode under visible light irradiation. Electrochim Acta 112:191–198CrossRefGoogle Scholar
  12. 12.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  13. 13.
    Kim H, Senthil K, Yong K (2010) Photoelectrochemical and photocatalytic properties of tungsten oxide nanorods grown by thermal evaporation. Mater Chem Phys 120:452–455CrossRefGoogle Scholar
  14. 14.
    Hepel M, Hazelton S (2005) Photoelectrocatalytic degradation of diazo dyes on nanostructured WO3 electrodes. Electrochim Acta 50:5278–5291CrossRefGoogle Scholar
  15. 15.
    Wang M, Ren F, Zhou J, Cai G, Cai L, Hu Y, Wang D, Liu Y, Guo L, Shen S (2015) N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: engineered impurity distribution and terraced band structure. Sci Rep. doi: 10.1038/srep12925 Google Scholar
  16. 16.
    Awais M, Dowling DD, Decker F, Dini D (2015) Photoelectrochemical properties of mesoporous NiOx deposited on technical FTO via nanopowder sintering in conventional and plasma atmospheres. SpringerPlus. doi: 10.1186/s40064-015-1265-3 Google Scholar
  17. 17.
    Bamwenda GR, Arakawa H (2001) The visible light induced photocatalytic activity of tungsten trioxide powders. Appl Catal A 210:181–191CrossRefGoogle Scholar
  18. 18.
    Shi X, Choi IY, Zhang K, Kwon J, Kim DY, Lee JK, Oh SH, Kim JK, Park JH (2014) Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nat Commun. doi: 10.1038/ncomms5775 Google Scholar
  19. 19.
    Sui C, Gong J, Cheng T, Zhou G, Dong S (2011) Fabrication of tungsten oxide microfibers with photocatalytic activity by electrospunning from PVA/H 3 PW 12 O 40 gel. Appl Surf Sci 257:8600–8604CrossRefGoogle Scholar
  20. 20.
    Esiner S, Willems RE, Furlan A, Li W, Wienk MM, Janssen RA (2015) Photoelectrochemical water splitting in an organic artificial leaf. J Mater Chem A 3:23936–23945CrossRefGoogle Scholar
  21. 21.
    Anis SF, Hashaikeh R (2016) Electrospun zeolite-Y fibers: fabrication and morphology analysis. Micropor Mesopor Mat 233:78–86CrossRefGoogle Scholar
  22. 22.
    Anis SF, Singaravel R, Hashaikeh R (2017) Electropsun Ni-W/zeolite composite fibers for n-heptane hydrocracking and hydroisomerization. Mater Chem Phys 200:146–154CrossRefGoogle Scholar
  23. 23.
    Anis SF, Lalia BS, Mostafa AO, Hashaikeh R (2017) Electrospun nickel–tungsten oxide composite fibers as active electrocatalysts for hydrogen evolution reaction. J Mater Sci. doi: 10.1007/s10853-017-0964-2 Google Scholar
  24. 24.
    Shah TK, Malecki HC, Basantkumar RR, Liu H, Fleischer CA, Sedlak JJ, Patel JM, Burgess WP, Goldfinger JM (2013) Carbon nanostructures and methods of making the same. In Google PatentsGoogle Scholar
  25. 25.
    Weber L, Egli U (1977) Phase relationships in the system NiO–WO3. J Mater Sci 12:1981–1987. doi: 10.1007/BF00561969 CrossRefGoogle Scholar
  26. 26.
    Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  27. 27.
    Chekin F, Bagherib S, Hamidb SBA (2013) Synthesis of tungsten oxide nanorods by the controlling precipitation reaction: application for hydrogen evolution reaction on a WO3 nanorods/carbon nanotubes composite film modified electrode. J Chin Chem Soc 60:447–451CrossRefGoogle Scholar
  28. 28.
    Gong M, Zhou W, Tsai M-C, Zhou J, Guan M, Lin M-C, Zhang B, Hu Y, Wang D-Y, Yang J (2014) Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun. doi: 10.1038/ncomms5695 Google Scholar
  29. 29.
    Anis SF, Lalia BS, Mostafa AO, Hashaikeh R (2017) Electrospun nickel–tungsten oxide composite fibers as active electrocatalysts for hydrogen evolution reaction. J Mater Sci 52:7269–7281. doi: 10.1007/s10853-017-0964-2 CrossRefGoogle Scholar
  30. 30.
    Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46CrossRefGoogle Scholar
  31. 31.
    Parhi P, Karthik TN, Manivannan V (2008) Synthesis and characterization of metal tungstates by novel solid-state metathetic approach. J Alloys Compd 465:380–386CrossRefGoogle Scholar
  32. 32.
    Kuzmin A, Kalinko A, Evarestov R (2011) First-principles LCAO study of phonons in NiWO4. Open Phys 9:502–509CrossRefGoogle Scholar
  33. 33.
    Lan C, Li C, Yin Y, Guo H, Wang S (2015) Synthesis of single-crystalline GeS nanoribbons for high sensitivity visible-light photodetectors. J Mater Chem C 3:8074–8079CrossRefGoogle Scholar
  34. 34.
    Chen Z, Dinh HN, Miller E (2013) Photoelectrochemical water splitting. SpringerBriefs in Energy, New York, pp 49–61Google Scholar
  35. 35.
    Wang F, Wang Y, Zhan X, Safdar M, Gong J, He J (2014) Pt nanoparticle and CdS quantum dot assisted WO3 nanowires grown on flexible carbon fibers for efficient oxygen production. CrystEngComm 16:1389–1394CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Shaheen Fatima Anis
    • 1
  • Boor Singh Lalia
    • 1
  • Giovanni Palmisano
    • 1
  • Raed Hashaikeh
    • 1
  1. 1.Chemical Engineering DepartmentKhalifa University of Science and Technology, Masdar InstituteAbu DhabiUnited Arab Emirates

Personalised recommendations