Journal of Materials Science

, Volume 53, Issue 3, pp 1699–1709 | Cite as

Oxygen ion mobility and conductivity prediction in cubic yttria-stabilized zirconia single crystals

  • Mohammad AsadikiyaEmail author
  • Yu Zhong


The CALPHAD (calculation of phase diagrams) approach is applied to predict the oxygen vacancy concentration at different temperatures and yttria concentrations of cubic yttria-stabilized zirconia (c-YSZ) single crystals. The quantitative mobility diagrams of oxygen ions are developed in a wide range of temperature and yttria concentration, using the experimental data from the literature. Therefore, the ionic conductivity of c-YSZ single crystals is predicted, using the mobility and oxygen vacancy concentration. Particularly, the conductivity of low-yttria c-YSZ is predicted by applying the CALPHAD approach for the first time. The conductivity prediction of low-yttria c-YSZ can be crucial, since new applications may be designed based on this new information. The activation energy and pre-exponential factor diagrams versus yttria concentration are also plotted.



The authors acknowledge the financial support from the American Chemical Society Petroleum Research Fund (PRF#54190-DNI10). The author M. Asadikiya also acknowledges the Doctoral Evidence Acquisition (DEA) Fellowship from Graduate School of Florida International University.

Compliance with ethical standards

Conflict of interest

The authors declare that no conflicts of interest exist for this work.


  1. 1.
    Etsell T, Flengas SN (1970) Electrical properties of solid oxide electrolytes. Chem Rev 70(3):339–376CrossRefGoogle Scholar
  2. 2.
    Nakamura A, Wagner JB (1986) Defect structure, ionic conductivity, and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure. J Electrochem Soc 133(8):1542–1548CrossRefGoogle Scholar
  3. 3.
    Ramamoorthy R, Dutta P, Akbar S (2003) Oxygen sensors: materials, methods, designs and applications. J Mater Sci 38(21):4271–4282. doi: 10.1023/A:1026370729205 CrossRefGoogle Scholar
  4. 4.
    Subbarao E, Maiti H (1984) Solid electrolytes with oxygen ion conduction. Solid State Ion 11(4):317–338CrossRefGoogle Scholar
  5. 5.
    Wagner C (1943) Über den Mechanismus der elektrischen Stromleitung im Nernststift. Naturwissenschaften 31(23):265–268CrossRefGoogle Scholar
  6. 6.
    Suzuki Y, Kohzaki T (1993) Electrical conduction behavior and phase transition of Y2O3-stabilized ZrO2. Solid State Ion 59(3):307–312CrossRefGoogle Scholar
  7. 7.
    Suzuki Y (1997) Phase transition temperature of ZrO2–Y2O3 solid solutions (2.4–6 mol% Y2O3). Solid State Ion 95(3):227–230CrossRefGoogle Scholar
  8. 8.
    Suzuki Y (1995) Phase transition temperature of fluorite-type ZrO2–Y2O3 solid solutions containing 8–44 mol% Y2O3. Solid State Ion 81(3):211–216CrossRefGoogle Scholar
  9. 9.
    Pimenov A et al (1998) Ionic conductivity and relaxations in ZrO2–Y2O3 solid solutions. Solid State Ion 109(1):111–118CrossRefGoogle Scholar
  10. 10.
    Kwon OH, Choi GM (2006) Electrical conductivity of thick film YSZ. Solid State Ion 177(35):3057–3062CrossRefGoogle Scholar
  11. 11.
    Luo J, Almond DP, Stevens R (2000) Ionic mobilities and association energies from an analysis of electrical impedance of ZrO2–Y2O3 alloys. J Am Ceram Soc 83(7):1703–1708CrossRefGoogle Scholar
  12. 12.
    Park JH, Blumenthal RN (1989) Electronic transport in 8 mol% Y2O3–ZrO2. J Electrochem Soc 136(10):2867–2876CrossRefGoogle Scholar
  13. 13.
    Ikeda S et al (1985) Electrical conductivity of yttria-stabilized zirconia single crystals. J Mater Sci 20(12):4593–4600. doi: 10.1007/BF00559349 CrossRefGoogle Scholar
  14. 14.
    Asadikiya M et al (2017) Integrated investigation of the Li4Ti5O12 phase stability. Ionics. doi: 10.1007/s11581-017-2248-x Google Scholar
  15. 15.
    Lee E, Prinz FB, Cai W (2011) Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution. Phys Rev B 83(5):052301CrossRefGoogle Scholar
  16. 16.
    Lee E, Prinz FB, Cai W (2012) Ab initio kinetic Monte Carlo model of ionic conduction in bulk yttria-stabilized zirconia. Model Simul Mater Sci Eng 20(6):065006CrossRefGoogle Scholar
  17. 17.
    Meyer M, Nicoloso N, Jaenisch V (1997) Percolation model for the anomalous conductivity of fluorite-related oxides. Phys Rev B 56(10):5961CrossRefGoogle Scholar
  18. 18.
    Pornprasertsuk R et al (2005) Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J Appl Phys 98(10):103513CrossRefGoogle Scholar
  19. 19.
    Devanathan R et al (2006) Computer simulation of defects and oxygen transport in yttria-stabilized zirconia. Solid State Ion 177(15):1251–1258CrossRefGoogle Scholar
  20. 20.
    Huang C, Wei W, Chen C (2010) Simulation of atomic-scale defects in the clustering and oxygen jumping process of 8 mol% yttria-stabilised zirconia. J Ceram Process Res 11(6):641–647Google Scholar
  21. 21.
    Huang HC et al (2014) Molecular dynamics simulation of oxygen ion diffusion in yttria stabilized zirconia single crystals and bicrystals. Fuel Cells 14(4):574–580CrossRefGoogle Scholar
  22. 22.
    Darvish S et al (2015) Quantitative defect chemistry analysis and electronic conductivity prediction of La0.8Sr0.2MnO3±δ Perovskite. J Electrochem Soc 162(9):E134–E140CrossRefGoogle Scholar
  23. 23.
    Darvish S, Saxena SK, Zhong Y (2015) Quantitative analysis of (La0.8Sr0.2)0.98 MnO3±δ electronic conductivity using CALPHAD approach. In: Developments in strategic ceramic materials: a collection of papers presented at the 39th international conference on advanced ceramics and composites. Wiley Online LibraryGoogle Scholar
  24. 24.
    Barsoum M (2002) Fundamentals of ceramics. CRC Press, BostonGoogle Scholar
  25. 25.
    Casselton R (1970) Low field DC conduction in yttria-stabilized zirconia. Physica Status Solidi (a). 2(3):571–585CrossRefGoogle Scholar
  26. 26.
    Zhang C et al (2007) Ionic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Mater Sci Eng B 137(1):24–30CrossRefGoogle Scholar
  27. 27.
    Kilner JA, Steele BCH (1981) Nonstoichiometric oxides. Academic Press, New YorkGoogle Scholar
  28. 28.
    Jansson B (1984) Trita-Mac-0234. Royal Institute of Technology, StockholmGoogle Scholar
  29. 29.
    Bale CW et al (2009) FactSage thermochemical software and databases —recent developments. Calphad 33(2):295–311CrossRefGoogle Scholar
  30. 30.
    Asadikiya M et al (2017) Thermodynamic modeling and investigation of the oxygen effect on the sintering of B4C. J Alloy Compd 699:1022–1029CrossRefGoogle Scholar
  31. 31.
    Asadikiya M et al (2016) The role of CALPHAD approach in the sintering of B4C with SiC as a sintering aid by spark plasma sintering technique. Addit Manuf Strateg Technol Adv Ceram Ceram Trans 258:185–191CrossRefGoogle Scholar
  32. 32.
    Asadikiya M et al (2016) Phase diagram for a nano-yttria-stabilized zirconia system. RSC Adv 6(21):17438–17445CrossRefGoogle Scholar
  33. 33.
    Darvish S et al (2016) Thermodynamic prediction of the effect of CO2 to the stability of (La0.8Sr0.2)0.98MnO3±δ system. Int J Hydrog Energy 41(24):10239–10248CrossRefGoogle Scholar
  34. 34.
    Asadikiya M et al (2017) The effect of sintering parameters on spark plasma sintering of B4C. Ceram Int 43(14):11182–11188CrossRefGoogle Scholar
  35. 35.
    Sabarou H et al (2017) Thermodynamic assessment of the chemical stability of (La0.8Sr0.2)0.98Crx Fe1−xO3±δ under oxygen transport membrane fabrication and operation conditions. Solid State Ion 310:1–9CrossRefGoogle Scholar
  36. 36.
    Chen M, Hallstedt B, Gauckler LJ (2004) Thermodynamic modeling of the ZrO2–YO1.5 system. Solid State Ion 170(3):255–274CrossRefGoogle Scholar
  37. 37.
    Guo X, Maier J (2001) Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc 148(3):E121–E126CrossRefGoogle Scholar
  38. 38.
    Liou S, Worrell W (1989) Electrical properties of novel mixed-conducting oxides. Appl Phys A Mater Sci Process 49(1):25–31CrossRefGoogle Scholar
  39. 39.
    Ramamoorthy R, Sundararaman D, Ramasamy S (1999) Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs. Solid State Ion 123(1):271–278CrossRefGoogle Scholar
  40. 40.
    Badwal SPS, Swain MV (1985) ZrO2–Y2O3: electrical conductivity of some fully and partially stabilized single grains. J Mater Sci Lett 4(4):487–489. doi: 10.1007/BF00719752 CrossRefGoogle Scholar
  41. 41.
    Abelard P, Baumard J (1982) Study of the dc and ac electrical properties of an yttria-stabilized zirconia single crystal [(ZrO2)0.88–(Y2O3)0.12]. Phys Rev B 26(2):1005CrossRefGoogle Scholar
  42. 42.
    Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res 33(1):91–128CrossRefGoogle Scholar
  43. 43.
    Yashima M, Kakihana M, Yoshimura M (1996) Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ion. 86–88(PART 2):1131–1149CrossRefGoogle Scholar
  44. 44.
    Kawada T et al (1992) Reaction between solid oxide fuel cell materials. Solid State Ion 50(3–4):189–196CrossRefGoogle Scholar
  45. 45.
    Kröger F (1966) Electronic conductivity of calcia-stabilized zirconia. J Am Ceram Soc 49(4):215–218CrossRefGoogle Scholar
  46. 46.
    Tien T, Subbarao E (1963) X-ray and electrical conductivity study of the fluorite phase in the system ZrO2–CaO. J Chem Phys 39(4):1041–1047CrossRefGoogle Scholar
  47. 47.
    Ioffe A, Rutman D, Karpachov S (1978) On the nature of the conductivity maximum in zirconia-based solid electrolytes. Electrochim Acta 23(2):141–142CrossRefGoogle Scholar
  48. 48.
    Schmalzried H (1977) On correlation effects of vacancies in ionic crystals. Z Phys Chem 105(1–2):47–62CrossRefGoogle Scholar
  49. 49.
    Zhu J et al (2015) Probing local electrochemical activity within yttria-stabilized-zirconia via in situ high-temperature atomic force microscopy. J Mater Res 30(03):357–363CrossRefGoogle Scholar
  50. 50.
    Sawaguchi N, Ogawa H (2000) Simulated diffusion of oxide ions in YO1.5–ZrO2 at high temperature. Solid State Ion 128(1):183–189CrossRefGoogle Scholar
  51. 51.
    Krishnamurthy R et al (2004) Oxygen diffusion in yttria-stabilized zirconia: a new simulation model. J Am Ceram Soc 87(10):1821–1830CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringFlorida International UniversityMiamiUSA
  2. 2.Center for the Study of Matter at Extreme Conditions (CeSMEC)Florida International UniversityMiamiUSA
  3. 3.Mechanical Engineering DepartmentWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations