Advertisement

Journal of Materials Science

, Volume 53, Issue 1, pp 356–368 | Cite as

Investigation of earth-alkaline (EA = Mg, Ca, Sr) containing methylammonium tin iodide perovskite systems

  • Lucangelo DimessoEmail author
  • Chittaranjan Das
  • Thomas Mayer
  • Wolfram Jaegermann
Ceramics

Abstract

Methylammonium tin iodide systems containing earth-alkaline ions (CH3NH3Sn1−x (EA) x I3, EA = Ca2+, Sr2+, Mg2+, 0 ≤ x ≤ 0.30) were investigated. The X-ray diffraction patterns detected the formation of tetragonal nearly cubic CH3NH3SnI3 (space group P4mm), SnI2, and not identified phases. The morphological analysis confirmed the presence of secondary phases with formation of irregularly shaped crystallites. The Sn3d and I3d photoemission spectra revealed the typical position and separation of spin–orbit components for Sn2+ in halides. Static thermogravimetric measurements (T = 85 °C) showed a barely measurable weight loss for EA = Mg, a dramatic decrease of the weight loss rate for EA = Ca, and recorded weight losses till t ≈ 1.5 h only for EA = Sr, respectively. The optical spectra displayed absorption edges which increased at increasing the (EA)-content with maximum values for x = 0.050 (λ on-set = 1754 nm, EA = Mg; λ on-set = 1692 nm, EA = Ca; and λ on-set = 1338 nm, EA = Sr, respectively). The Tauc plots revealed a direct semiconducting behavior with band energy gaps depending on the nature and amount of the (EA)-ions. The photoluminescence (PL) spectra showed, for EA = Mg, an increase of the PL-band intensity at increasing the Mg content with a maximum at x = 1.0 and, for EA = Ca, an increase of band intensity at increasing the Ca-content and for EA = Sr, a band intensity maximum at x = 0.025. This was explained by the similar ionic radius between Sn2+ and Sr2+ ions which can be easily exchanged in the SnI6 2− octahedra.

Notes

Acknowledgements

Many thanks are owed to Mr. J.C. Jaud for technical assistance in XRD analysis and to Mrs. C. Fasel for the technical assistance in the dynamic and static thermal analysis. The authors thank the Federal Ministry of Research and Development (BMBF) (Project “Perosol” No. 03SF0483B) for the financial support during this work.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2017_1545_MOESM1_ESM.tif (4.9 mb)
Figure S1 XRD patterns of CH3NH3Sn1−x(EA)xI3 systems (0.0 ≤ x ≤ 0.3) for A) EA = Mg; B) EA = Ca; and C) EA = Sr, respectively. “P” indicates the nearly cubic perovskite phase (P4mm space group) (TIFF 5017 kb)
10853_2017_1545_MOESM2_ESM.tif (3.1 mb)
Figure S2 O1 s photoelectron emission spectra of the CH3NH3Sn0.95(EA)0.05I3 systems (TIFF 3169 kb)

References

  1. 1.
    Stranks SD, Snaith HJ (2015) Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 10:391–402CrossRefGoogle Scholar
  2. 2.
    Binek A, Petrus ML, Huber N, Bristow H, Hu Y, Bein T, Docampo P (2016) Recycling perovskite solar cells to avoid lead waste. ACS Appl Mater Interfaces 8:12881–12886CrossRefGoogle Scholar
  3. 3.
    Schmidt TM, Larsen-Olsen TT, Carle JE, Angmo D, Krebs FC (2015) Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv Energy Mater 5:1500569CrossRefGoogle Scholar
  4. 4.
    Dimesso L, Dimamay M, Hamburger M, Jaegermann W (2014) Properties of CH3NH3PbX3 (X = I, Br, Cl) powders as precursors for organic/inorganic solar cells. Chem Mater 26:6762–6770CrossRefGoogle Scholar
  5. 5.
    Dimesso L, Kim YM, Jaegermann W (2016) Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Mater Sci Eng B 204:27–33CrossRefGoogle Scholar
  6. 6.
    Boix PP, Agarwala S, Ming Koh T, Mathews N, Mhaisalkar SG (2015) Perovskite solar cells: beyond methylammonium lead iodide. J Phys Chem Lett 6:898–907CrossRefGoogle Scholar
  7. 7.
    Environmental Health Criteria 3: Lead (World Health Organization, 1977)Google Scholar
  8. 8.
    Exposure to lead: a major public health concern (World Health Organization, 2010)Google Scholar
  9. 9.
    Howe PD, Watts P (2005) Tin and inorganic tin compounds (World Health Organization)Google Scholar
  10. 10.
    Babayigit A, Duy Thanh D, Ethirajan A, Manca J, Muller M, Boyen H-G, Conings B (2016) Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism. Danio Rerio Sci Rep 6:18721CrossRefGoogle Scholar
  11. 11.
    Yang J, Siempelkamp BD, Liu D, Kelly TL (2015) Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9:1955–1963CrossRefGoogle Scholar
  12. 12.
    Aristidou N, Sanchez-Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, Haque SA (2015) The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew Chem Int Ed 54:8208–8212CrossRefGoogle Scholar
  13. 13.
    Conings B, Drijkoningen J, Gauquelin N, Babayigit A, D’Haen J, D’Olieslaeger L, Ethirajan A, Verbeeck J, Manca J, Mosconi E, De Angelis F, Boyen HG (2015) Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater 5:1500477CrossRefGoogle Scholar
  14. 14.
    Dimesso L, Fasel C, Lakus-Wollny K, Mayer T, Jaegermann W (2017) Thermal stability of lead-free CH3NH3SnxI3 systems (0.9 ≤ x ≤ 1.1) for photovoltaics. Mater Sci Semicond Proc 68:152–158CrossRefGoogle Scholar
  15. 15.
    Navas J, Sánchez-Coronilla A, Gallardo JJ, Cruz Hernández N, Piñero JC, Alcántara R, Fernández-Lorenzo C, De los Santos DM, Aguilara T, Martín-Calleja J (2015) New insights into organic–inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+. Nanoscale 7:6216–6229CrossRefGoogle Scholar
  16. 16.
    Pérez-del-Rey D, Forgács D, Hutter EM, Savenije TJ, Nordlund D, Schulz P, Berry JJ, Sessolo M, Bolink HJ (2016) Strontium insertion in methylammonium lead iodide: long charge carrier lifetime and high fill-factor solar cells. Adv Mater 28:9839–9845CrossRefGoogle Scholar
  17. 17.
    Scaife D, Weller P, Fisher W (1974) Crystal preparation and properties of cesium tin(II) trihalides. J Solid State Chem 9:308–314CrossRefGoogle Scholar
  18. 18.
    Foster LS, Nahas HG, Lineken EE (1946) Hydroiodic acid: regeneration of oxidized solutions. In: Fernelius WC (ed) Inorganic syntheses, chap VII, vol 2. Wiley, Hoboken, p 210Google Scholar
  19. 19.
    Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52:9019–9038CrossRefGoogle Scholar
  20. 20.
    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey SS, Ma T, Hayase S (2014) (CH3NH3SnxPb(1 −x)I3 perovskite solar cells covering up to 1060 nm. J Phys Chem Lett 5:1004–1011CrossRefGoogle Scholar
  21. 21.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767CrossRefGoogle Scholar
  22. 22.
    Allred AL (1961) Electronegativity values from thermochemical data. J Inorg Nuclear Chem 17(3–4):215–221CrossRefGoogle Scholar
  23. 23.
    Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2012) NIST Standard Reference Database 20, Version 4.1, GaithersburgGoogle Scholar
  24. 24.
    Physical constants of inorganic compounds. In: Haynes WM (ed) CRC handbook of chemistry and physics, 95th edn (Internet Version 2015). CRC Press, Boca RatonGoogle Scholar
  25. 25.
    Mitzi DB (1996) Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem Mater 8:791–800CrossRefGoogle Scholar
  26. 26.
    Brunetti B, Cavallo C, Ciccioli A, Gigli G, Latini A (2016) On the thermal and thermodynamic (In)Stability of methylammonium lead halide perovskites. Nat Sci Rep 6:31896. doi: 10.1038/srep31896 CrossRefGoogle Scholar
  27. 27.
    Juarez-Perez EJ, Hawash Z, Raga SR, Ono LK, Qi Y (2016) Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ Sci 9:3406–3410CrossRefGoogle Scholar
  28. 28.
    Dimesso L, Das C, Stöhr M, Jaegermann W (2017) Investigation of cesium tin/lead iodide (CsSn1−xPbxI3) systems. Mater Res Bull 85:80–89CrossRefGoogle Scholar
  29. 29.
    Gasparotto G, Lima SAM, Davolos MR, Varela JA, Longo E, Zaghete MA (2008) Luminescence properties of Eu3+- and Mg2+-doped LiTaO3 obtained via the polymeric precursor method. J Luminescence 128:1606–1610CrossRefGoogle Scholar
  30. 30.
    Liu Z, Wang Q, Yang Y, Tao C, Yang H (2010) Luminescent properties of codoping Y2O3: Eu, Me (Me = Mg, Ca) nanorods. J Nanopart Res 12:2233–2240CrossRefGoogle Scholar
  31. 31.
    Cao R, Luo W, Xu H, Luo Z, Hua Q, Fu T, Peng D (2016) Luminescence property and emission enhancement of YbAlO3:Mn4+ red phosphor by Mg2+ or Li+ ions. Opt Mater 53:169–173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Materials Science DepartmentTechnische Universitaet DarmstadtDarmstadtGermany

Personalised recommendations