Journal of Materials Science

, Volume 53, Issue 1, pp 435–446 | Cite as

A facile shape-controlled synthesis of highly photoactive fluorine containing TiO2 nanosheets with high {001} facet exposure

  • M. A. Lara
  • M. J. Sayagués
  • J. A. Navío
  • M. C. Hidalgo
Chemical routes to materials

Abstract

Surface-fluorinated TiO2 materials with high {001} facet exposure were prepared by a simple and high-yield preparation procedure. Faceted/fluorinated samples showed a high photocatalytic performance not only in oxidation processes, tested in phenol and methyl orange degradation, but also in a reduction process as Cr(VI) photoreduction. Reaction rates for these materials greatly exceeded the ones obtained for materials prepared without fluorine addition and for commercial TiO2 Degussa (Evonik) P25 used as reference photocatalyst. A broad characterisation of the samples allowed us to estimate the percentages of different facets and the amount and form in which the fluorine is found on the surfaces. Good photocatalytic behaviour can be ascribed to both high {001} facet exposure and adsorbed fluorine on the photocatalysts surfaces.

Notes

Acknowledgements

This work was supported by research fund from Project Ref. CTQ2015-64664-C2-2-P (MINECO/FEDER UE). CITIUS (University of Seville) is acknowledged for XRF and XPS measurements.

References

  1. 1.
    Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986CrossRefGoogle Scholar
  2. 2.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  3. 3.
    Chen J, Qiu F, Xu W, Cao S, Zhu H (2015) Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Appl Catal A 4(95):131–140CrossRefGoogle Scholar
  4. 4.
    Fang WQ, Gong X-Q, Yang HG (2011) On the unusual properties of anatase TiO2 exposed by highly reactive facets. J Phys Chem Lett 2:725–734CrossRefGoogle Scholar
  5. 5.
    Grabowska E, Diak M, Marchelek M, Zaleska A (2014) Decahedral TiO2 with exposed facets: synthesis, properties, photoactivity and applications. Appl Catal B 156–157:213–235CrossRefGoogle Scholar
  6. 6.
    Wang Z, Lv K, Wang G, Deng K, Tang D (2010) Study on the shape control and photocatalytic activity of high-energy anatase titania. Appl Catal B 100:378–385CrossRefGoogle Scholar
  7. 7.
    Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng H-M (2014) Titanium dioxide crystals with tailored facets. Chem Rev 114:9559–9612CrossRefGoogle Scholar
  8. 8.
    Luan Y, Jing L, Wu J, Xie M, Feng Y (2014) Long-lived photogenerated charge carriers of 001-facet-exposed TiO2 with enhanced thermal stability as an efficient photocatalyst. Appl Catal B 147:29–34CrossRefGoogle Scholar
  9. 9.
    Lin W, Zheng H, Zhang P, Xu T (2016) Pt deposited TiO2 films with exposed 001 facets for photocatalytic degradation of a pharmaceutical pollutant. Appl Catal A 521:75–82CrossRefGoogle Scholar
  10. 10.
    Yang L, Zhang Q, Wang W, Ma S, Zhang M, Lv J, He G, Sun Z (2016) Tuning the photoelectronic and photocatalytic properties of single-crystalline TiO2 nanosheet array films with dominant 001 facets by controlling the hydrochloric acid concentration. J Mater Sci 51:950–957. doi: 10.1007/s10853-015-9424-z CrossRefGoogle Scholar
  11. 11.
    Gong X-Q, Selloni A (2005) Reactivity of anatase TiO2 nanoparticles: the role of the minority (001) surface. J Phys Chem B 109:19560–19562CrossRefGoogle Scholar
  12. 12.
    Roy N, Sohn Y, Pradhan D (2013) Synergy of low-energy 101 and high-energy 001 TiO2 crystal facets for enhanced photocatalysis. ACS Nano 7:2532–2540CrossRefGoogle Scholar
  13. 13.
    Roy N, Park Y, Sohn Y, Leung KT, Pradhan D (2014) Green synthesis of anatase TiO2 nanocrystals with diverse shapes and their exposed facets-dependent photoredox activity. ACS Appl Mater Interfaces 6:16498–16507CrossRefGoogle Scholar
  14. 14.
    Kim EY, Choi H, Whang CM (2010) Controlled growth of TiO2 nanorods capped with carboxylate groups by the solvothermal process. J Mater Sci 45:3895–3900. doi: 10.1007/s10853-010-4448-x CrossRefGoogle Scholar
  15. 15.
    Dinh C-T, Nguyen T-D, Kleitz F, Do T-O (2009) Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano 3:3737–3743CrossRefGoogle Scholar
  16. 16.
    Dozzi MV, Selli E (2013) Specific facets-dominated anatase TiO2: fluorine-mediated synthesis and photoactivity. Catalysts 3:455–485CrossRefGoogle Scholar
  17. 17.
    Murcia JJ, Hidalgo MC, Navío JA, Araña J, Doña-Rodríguez JM (2015) Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition. Appl Catal B 179:305–312CrossRefGoogle Scholar
  18. 18.
    Vohra MS, Kim S, Choi W (2003) Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium. J Photochem Photobiol A 160:55–60CrossRefGoogle Scholar
  19. 19.
    Liu S, Yu J, Cheng B, Jaroniec M (2012) Fluorinated semiconductor photocatalysts: tunable synthesis and unique properties. Adv Colloid Interface Sci 173:35–53CrossRefGoogle Scholar
  20. 20.
    Park H, Choi W (2004) Effects of TiO2 surface fluorination on photocatalytic reactions and photoelectrochemical behaviors. J Phys Chem B 108:4086–4093CrossRefGoogle Scholar
  21. 21.
    Yang HG, Liu G, Qiao SZ, Sun CH, Jin YG, Smith SC, Zou J, Cheng HM, Lu GQ (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets. J Am Chem Soc 131:4078–4083CrossRefGoogle Scholar
  22. 22.
    Ye L, Liu J, Tian L, Peng T, Zan L (2013) The replacement of 101 by 010 facets inhibits the photocatalytic activity of anatase TiO2. Appl Catal B 134–135:60–65CrossRefGoogle Scholar
  23. 23.
    Golubovic A, Scepanovic MS, Kremenovic A, Askrabic S, Berec V, Dohcevic-Mitrovic Z, Popovic ZV (2009) Raman study of the variation in anatase structure of TiO2 nanopowders due to the changes of sol–gel synthesis conditions. J Sol Gel Sci Technol 49:311–319CrossRefGoogle Scholar
  24. 24.
    Tian F, Zhang Y, Zhang J, Pan C (2012) Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J Phys Chem C 116:7515–7519CrossRefGoogle Scholar
  25. 25.
    Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow RA, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801CrossRefGoogle Scholar
  26. 26.
    Fang W, Yang X, Zhu H, Li Z, Zhao H, Yao X, Yang HG (2012) Yolk@shell anatase TiO2 hierarchical microspheres with exposed 001 facets for high-performance dye sensitized solar cells. J Mater Chem 22:22082–22089CrossRefGoogle Scholar
  27. 27.
    Yu JC, Yu J, Ho W, Jiang Z, Zhang L (2002) Effects of F doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816CrossRefGoogle Scholar
  28. 28.
    Iervolino G, Vaiano V, Murcia JJ, Rizzo L, Ventre G, Pepe G, Campiglia P, Hidalgo MC, Navío JA, Sannino D (2016) Photocatalytic hydrogen production from degradation of glucose over fluorinated and platinized TiO2 catalysts. J Catal 339:47–56CrossRefGoogle Scholar
  29. 29.
    Mrowetz M, Selli E (2005) Enhanced photocatalytic formation of hydroxyl radicals on fluorinated TiO2. Phys Chem Chem Phys 7:1100–1102CrossRefGoogle Scholar
  30. 30.
    Ohno T, Sarukawa K, Matsumura M (2002) Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J Chem 26:1167–1170CrossRefGoogle Scholar
  31. 31.
    Chen G, Feng JI, Wang W, Yin Y, Liu H (2017) Photocatalytic removal of hexavalent chromium by newly designed and highly reductive TiO2 nanocrystals. Water Res 108:383–390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Instituto de Ciencia de Materiales de Sevilla (ICMS), Consejo Superior de Investigaciones Científicas CSICUniversidad de SevillaSevilleSpain
  2. 2.Departamento Cristalografía, Mineralogía y Química AgrícolaUniversidad de SevillaSevilleSpain

Personalised recommendations