Advertisement

Journal of Materials Science

, Volume 53, Issue 1, pp 591–603 | Cite as

Synthesis, characterization, thermal properties, conductivity and sensor application study of polyaniline/cerium-doped titanium dioxide nanocomposites

  • T. Sampreeth
  • M. A. Al-Maghrabi
  • B. K. Bahuleyan
  • M. T. Ramesan
Composites

Abstract

This work focuses on the in situ chemical oxidative polymerization of aniline with different contents of cerium-doped titanium dioxide (Ce–TiO2) nanoparticles for the synthesis of polyaniline (PANI)/metal-doped TiO2 nanocomposites. The interaction of nanoparticles with PANI segments was characterized by FT-IR, UV, XRD, SEM, DSC, TGA and conductivity studies. The sensitivity of ammonia gas through the fabricated nanocomposite was also evaluated with respect to different contents of nanoparticles. The shift in FT-IR peak and UV absorption bands of nanocomposite with respect to pure PANI was clearly observed from the spectroscopic studies. Results from XRD studies showed the uniform arrangement of nanoparticles within the polymer matrix. SEM analysis showed the uniform structure of nanocomposites with spherically shaped dispersion of metal oxide nanoparticles. DSC studies revealed the increased glass transition and melting temperature of nanocomposites with an increase in the concentration of nanoparticles indicating the strong intermolecular interaction between nanoparticles and the polymer chain. TGA showed a higher thermal stability of nanocomposites than that of pure PANI, and thermal stability increases with the increase in the concentration of nanoparticles. Electrical properties such as AC conductivity, dielectric constant and dielectric loss tangent of nanocomposites were greater than pure PANI, and the magnitude of these properties increased with the loading of nanoparticles. Like AC conductivity, the DC conductivity of nanocomposite increased with the loading of nanoparticles. The maximum electrical conductivity was noted for 7 wt% composite. The ammonia sensing properties of composite were higher than the pristine PANI.

Notes

Acknowledgements

The authors wish to thank Prof. P. P. Pradyumnan, Department of Physics, University of Calicut, and Prof. P. Pradeep, Department of Physics, NIT Calicut, for providing necessary facilities in the department.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Hien HT, Giang HT, Trung T, Tuan CV (2017) Enhancement of biosensing performance using a polyaniline/multiwalled carbon nanotubes nanocomposite. J Mater Sci 52:1694–1703. doi: 10.1007/s10853-016-0461-z CrossRefGoogle Scholar
  2. 2.
    Ramesan MT, Nidhisha V, Jayakrishnan P (2017) Synthesis, characterization and conducting properties of novel poly(vinyl cinnamate)/zinc oxide nanocomposites via in situ polymerization. Mater Sci Semicond Process 63:253–260CrossRefGoogle Scholar
  3. 3.
    Deng M, Yang B, Hu Y (2005) Polyaniline deposition to enhance the specific capacitance of carbon nanotubes for supercapacitors. J Mater Sci 40:5021–5023. doi: 10.1007/s10853-005-1623-6 CrossRefGoogle Scholar
  4. 4.
    Dinari M, Momeni MM, Goudarziard M (2016) Dye sensitized solar cells based on nanocomposite of polyaniline/grapheme quantum dots. J Mater Sci 51:2964–2971. doi: 10.1007/s10853-015-9605-9 CrossRefGoogle Scholar
  5. 5.
    Aphesteguy JC, Jacobo SE (2007) Synthesis of a soluble polyaniline–ferrite composite: magnetic and electric properties. J Mater Sci 42:7062–7068. doi: 10.1007/s10853-006-1423-7 CrossRefGoogle Scholar
  6. 6.
    Yilmaz H, Zengin H, Unal HI (2012) Synthesis and electrorheological properties of polyaniline/silicon dioxide composites. J Mater Sci 47:5276–5286. doi: 10.1007/s10853-012-6413-3 CrossRefGoogle Scholar
  7. 7.
    Ahmad N, MacDiarmid AG (1996) Inhibition of corrosion of steels with the exploitation of conducting polymers. Synth Met 78:103–110CrossRefGoogle Scholar
  8. 8.
    Yang C, Chen C (2005) Uniaxial strain dependence of electronic states of θ-(BEDT-TTF)2MZn(SCN)4 [M = Cs, Rb]. Synth Met 133:153–155Google Scholar
  9. 9.
    Izumi CMS, Constantino VRL, Ferreira AMC, Temperini MLA (2006) Uniaxial strain dependence of electronic states of θ-(BEDT-TTF)2MZn(SCN)4 [M = Cs, Rb]. Synth Met 156:654–663CrossRefGoogle Scholar
  10. 10.
    Sarno DM, Martin JJ, Hira SM, Timpson CJ, Gaffney JP, Jones WE (2007) Enhanced conductivity of thin film polyaniline by self-assembled transition metal complexes. Langmuir 23:879–884CrossRefGoogle Scholar
  11. 11.
    Rivas BL, Sanchez CO (2001) Synthesis, characterization, and electrical conductivity of polyaniline derivatives: Study with the metal ions Cu(II), Ni(II), and Co(II). J Appl Polym Sci 82:330–337CrossRefGoogle Scholar
  12. 12.
    Aguirre MJ, Retamal BA, Zanartu MSV, Zagal JH, Cordova R, Schrebler R, Biaggio SR (1992) Effects of alkaline cations on polyaniline electrochemical synthesis. J Electroanal Chem 328:349–354CrossRefGoogle Scholar
  13. 13.
    Chen SA, Lin LC (1995) Polyaniline doped by the new class of dopant, ionic salt—structure and properties. Macromolecules 28:1239–1245CrossRefGoogle Scholar
  14. 14.
    Gangopadhyay R, Amitabha D (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12:608–622CrossRefGoogle Scholar
  15. 15.
    Ramesan MT (2013) Synthesis, characterization and conductivity studies of polypyrrole/copper sulfide nanocomposites. J Appl Polym Sci 128:1540–1546Google Scholar
  16. 16.
    Ramesan MT (2014) Synthesis, characterization and properties of new conducting polyaniline/copper sulphide nanocomposites. Polym Eng Sci 54:438–445CrossRefGoogle Scholar
  17. 17.
    Savitha KU, Gurumallesh PH (2013) Polyaniline–TiO2 hybrid-coated cotton fabric for durable electrical conductivity. J Appl Polym Sci 127:3147–3151CrossRefGoogle Scholar
  18. 18.
    Regan BO, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  19. 19.
    Machida M, Norimoto K, Watanabe T, Hashimoto K, Fujishima A (1999) The effect of SiO2 addition in super-hydrophilic property of TiO2 photocatalyst. J Mater Sci 34:2569–2574. doi: 10.1023/A:1004644514653 CrossRefGoogle Scholar
  20. 20.
    Liu XH, Liang CX, Wang HZ, Yang XJ, Lu LD, Wang X (2002) Usage of ultrafine anatase/TiO2·n·H2O powder: photo catalysis and microstructure control for nanocrystalline TiO2. Mater Sci Eng, A 326:235–239CrossRefGoogle Scholar
  21. 21.
    Chowdhury D, Palu A, Chattopadhyay A (2005) Photocatalytic polypyrrole-TiO2-nanoparticles composite thin film generated at the air-water interface. Langmuir 21:4123–4128CrossRefGoogle Scholar
  22. 22.
    Reszczynska J, Iwulska A, Sliwinski G, Zaleska A (2012) Characterization and photocatalytic activity of rare earth metal-doped titanium dioxide. Physicochem Probl Miner Process 48:201–208Google Scholar
  23. 23.
    Stengl V, Bakardjieva S, Murafa N (2009) Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys 114:217–226CrossRefGoogle Scholar
  24. 24.
    Assmann SE, Widoniak J, Maret G (2004) Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles. Chem Mater 16:6–11CrossRefGoogle Scholar
  25. 25.
    Ramesan MT (2014) In situ synthesis, characterization and conductivity of copper sulphide/polypyrrole/polyvinyl alcohol blend nanocomposite. Polym Plast Technol Eng 51:1223–1229CrossRefGoogle Scholar
  26. 26.
    Wang M, Galpaya D, Lai ZB, Xu Y, Yan C (2014) Surface functionalization on the thermal conductivity of graphene–polymer nanocomposites. Int J Smart Nano Mater 5:123–132CrossRefGoogle Scholar
  27. 27.
    Comparelli R, Fanizza E, Curri ML, Cozzoli PD, Mascolo G, Passino R, Agostiano A (2005) Photocatalytic degradation of azo dyes by organic-capped anatase TiO2 nanocrystals immobilized onto substrates. Appl Catal B 55:81–91CrossRefGoogle Scholar
  28. 28.
    Ma Y, Zhang J, Tian B, Chen F, Wang L (2010) Synthesis and characterization of thermally stable Sm, N co-doped TiO2 with highly visible light activity. J Hazard Mater 182:386–393CrossRefGoogle Scholar
  29. 29.
    Sathiyanarayanan S, Azim SS, Venkatachari G (2007) A new corrosion protection coating with polyaniline–TiO2 composite for steel. Electrochim Acta 52:2068–2074CrossRefGoogle Scholar
  30. 30.
    Liu Z, Guo B, Hong L, Jiang H (2005) Preparation and characterization of cerium oxide doped TiO2 nanoparticles. J Phys Chem Solids 66:161–167CrossRefGoogle Scholar
  31. 31.
    Jayakrishnan P, Ramesan MT (2017) Studies on the effect of magnetite nanoparticles on magnetic, mechanical, thermal, temperature dependent electrical resistivity and DC conductivity modeling of poly (vinyl alcohol-co-acrylic acid)/Fe3O4 nanocomposites. Mater Chem Phys 186:513–522CrossRefGoogle Scholar
  32. 32.
    Ramesan MT (2015) Poly (ethylene-co-vinyl acetate)/magnetite nanocomposites: interaction of some liquid fuels, thermal and oil resistance studies. Polym Polym Compos 23:85–92Google Scholar
  33. 33.
    Ramesan MT, Abdu RVP, Jayakrishnan P, Pradyumnan PP (2014) Acrylonitrile butadiene rubber (NBR)/manganous tungstate (MnWO4) nanocomposites: characterization, mechanical and electrical properties. AIP Conf Proc 1620:3–9CrossRefGoogle Scholar
  34. 34.
    Nihmath A, Ramesan MT (2017) Fabrication, Characterization and Dielectric Studies of NBR/Hydroxyapatite Nanocomposites. J Inorg Organomet Polym 27:481–489CrossRefGoogle Scholar
  35. 35.
    Ramesan MT, George A, Jayakrishnan P, Prasad GK (2016) Role of pumice particles in the thermal, electrical and mechanical properties of poly (vinyl alcohol)/poly (vinyl pyrrolidone) composites. J Therm Anal Calorim 126:511–519CrossRefGoogle Scholar
  36. 36.
    Jayakrishnan P, Ramesan MT (2017) Synthesis, characterization, electrical conductivity and material properties of magnetite/polyindole/poly (vinyl alcohol) blend nanocomposites. J Inorg Organomet Polym 27:323–333CrossRefGoogle Scholar
  37. 37.
    Ramesan MT, Nidhisha V, Jayakrishnan P (2017) Facile synthesis, characterization and material properties of novel poly (vinyl cinnamate)/nickel oxide nanocomposites. Polym Int 66:548–556CrossRefGoogle Scholar
  38. 38.
    Wu Y, Xing S, Fu J (2010) Examining the use of TiO2 to enhance the NH3 sensitivity of polypyrrole films. J Appl Polym Sci 118:3351–3356CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CalicutMalappuramIndia
  2. 2.Department of General StudiesYanbu Industrial CollegeYanbu Industrial CityKingdom of Saudi Arabia

Personalised recommendations