Journal of Materials Science

, Volume 53, Issue 1, pp 799–813 | Cite as

Indentation into an Al/Si composite: enhanced dislocation mobility at interface

  • Zhibo Zhang
  • Herbert M. Urbassek


Using molecular dynamics simulation, we study the indentation of a metal–ceramics (Al/Si) composite and compare it to that of the pure elements. An Al/Si interface running perpendicular to the surface is indented centrally. We find that—due to its higher stiffness and yield strength—Si expands into the Al side. As a consequence, the plasticity on the Al side is enhanced, leading to the formation of complex dislocation networks. On the Si side, the phase transformation from cubic diamond to bct5 structure, and subsequent amorphization near the indenter are accelerated, while the number of dislocations formed in the surviving cubic diamond phase is reduced. In both materials, the mobility of the dislocations is enhanced, in particular because the dislocations glide easily on the interface; as a consequence the composite is softer than the average of its constituents.



Simulations were performed at the High Performance Cluster Elwetritsch (RHRK, TU Kaiserslautern, Germany). We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft via the International Research and Training Group 2057.


  1. 1.
    Abram R, Chrobak D, Nowak R (2017) Origin of a nanoindentation pop-in event in silicon crystal. Phys Rev Lett 118:095502. doi: 10.1103/PhysRevLett.118.095502 CrossRefGoogle Scholar
  2. 2.
    Alabd Alhafez I, Brodyanski A, Kopnarski M, Urbassek HM (2017) Influence of tip geometry on nanoscratching. Tribol Lett 65(1):26. doi: 10.1007/s11249-016-0804-6 CrossRefGoogle Scholar
  3. 3.
    Alcalá J, Dalmau R, Franke O, Biener M, Biener J, Hodge A (2012) Planar defect nucleation and annihilation mechanisms in nanocontact plasticity of metal surfaces. Phys Rev Lett 109:075502CrossRefGoogle Scholar
  4. 4.
    Baskes MI, Angelo JE, Bisson CL (1994) Atomistic calculations of composite interfaces. Model Simul Mater Sci Eng 2(3A):505–518CrossRefGoogle Scholar
  5. 5.
    Bhattacharya S, Riahi AR, Alpas AT (2009) Indentation-induced subsurface damage in silicon particles of Al–Si alloys. Mat Sci Eng A 527:387–396CrossRefGoogle Scholar
  6. 6.
    Bhushan B, Li X (1997) Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J Mater Res 12:54–63CrossRefGoogle Scholar
  7. 7.
    Boyer LL, Kaxiras E, Feldman JL, Broughton JQ, Mehl MJ (1991) New low-energy crystal structure for silicon. Phys Rev Lett 67:715–718. doi: 10.1103/PhysRevLett.67.715 CrossRefGoogle Scholar
  8. 8.
    Cai W, Nix WD (2016) Imperfections in crystalline solids. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Chang L, Zhang L (2009) Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in: a nanoindentation study under ultra-low loads. Mat Sci Eng A 506:125–129CrossRefGoogle Scholar
  10. 10.
    Chen M, Meng-Burany X, Perry TA, Alpas AT (2008) Micromechanisms and mechanics of ultra-mild wear in Al–Si alloys. Acta Mater 56:5605–5616CrossRefGoogle Scholar
  11. 11.
    Chrobak D, Kim KH, Kurzydlowski KJ, Nowak R (2013) Nanoindentation experiments with different loading rate distinguish the mechanism of incipient plasticity. Appl Phys Lett 103:072101CrossRefGoogle Scholar
  12. 12.
    Chrobak D, Tymiak N, Beaber A, Ugurlu O, Gerberich WW, Nowak R (2011) Deconfinement leads to changes in the nanoscale plasticity of silicon. Nat Nanotechnol 6:480–484CrossRefGoogle Scholar
  13. 13.
    Clarke DR, Kroll MC, Kirchner PD, Cook RF, Hockey BJ (1988) Amorphization and conductivity of silicon and germanium induced by indentation. Phys Rev Lett 60:2156–2159. doi: 10.1103/PhysRevLett.60.2156 CrossRefGoogle Scholar
  14. 14.
    Domnich V, Gogotsi Y, Dub S (2000) Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl Phys Lett 76(16):2214–2216. doi: 10.1063/1.126300 CrossRefGoogle Scholar
  15. 15.
    Du X, Zhao H, Zhang L, Yang Y, Xu H, Fu H, Li L (2015) Molecular dynamics investigations of mechanical behaviours in monocrystalline silicon due to nanoindentation at cryogenic temperatures and room temperature. Sci Rep 5:16275. doi: 10.1038/srep16275 CrossRefGoogle Scholar
  16. 16.
    Dupont V, Sansoz F (2006) Grain boundary structure evolution in nanocrystalline Al by nanoindentation simulations. In: Materials research society symposium proceedings 903:0903–Z06–05.1Google Scholar
  17. 17.
    Elmadagli M, Perry T, Alpas AT (2007) A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys. Wear 262:79–92CrossRefGoogle Scholar
  18. 18.
    Fang TH, Wu JH (2008) Molecular dynamics simulations on nanoindentation mechanisms of multilayered films. Comput Mater Sci 43(4):785–790. doi: 10.1016/j.commatsci.2008.01.066 CrossRefGoogle Scholar
  19. 19.
    Feng Q, Song X, Xie H, Wang H, Liu X, Yin F (2017) Deformation and plastic coordination in WC–Co composite—molecular dynamics simulation of nanoindentation. Mater Des 120:193–203. doi: 10.1016/j.matdes.2017.02.010 CrossRefGoogle Scholar
  20. 20.
    Fischer-Cripps AC (2004) Nanoindentation, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  21. 21.
    Gall K, Horstemeyer MF, Van Schilfgaarde M, Baskes MI (2000) Atomistic simulations on the tensile debonding of an aluminum-silicon interface. J Mech Phys Sol 48(10):2183–2212. doi: 10.1016/S0022-5096(99)00086-1 CrossRefGoogle Scholar
  22. 22.
    Gao Y, Ruestes CJ, Tramontina DR, Urbassek HM (2015) Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J. Mech Phys Sol 75:58–75. doi: 10.1016/j.jmps.2014.11.005 CrossRefGoogle Scholar
  23. 23.
    Godet J, Pizzagalli L, Brochard S, Beauchamp P (2004) Theoretical study of dislocation nucleation from simple surface defects in semiconductors. Phys Rev B 70:054109. doi: 10.1103/PhysRevB.70.054109 CrossRefGoogle Scholar
  24. 24.
    Goel S, Faisal NH, Luo X, Yan J, Agrawal A (2014) Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. J Phys D 47:275304CrossRefGoogle Scholar
  25. 25.
    Goel S, Kovalchenko A, Stukowski A, Cross G (2016) Influence of microstructure on the cutting behaviour of silicon. Acta Mater 105:464–478CrossRefGoogle Scholar
  26. 26.
    Goel S, Luo X, Agrawal A, Reuben RL (2015) Diamond machining of silicon: a review of advances in molecular dynamics simulation. Int J Mach Tool Manu 88:131–164CrossRefGoogle Scholar
  27. 27.
    Gouldstone A, Chollacoop N, Dao M, Li J, Minor AM, Shen YL (2007) Indentation across size scales and disciplines: recent developments in experimentation and modeling. Acta Mater 55:4015–4039CrossRefGoogle Scholar
  28. 28.
    Hale LM, Zhang DB, Zhou X, Zimmerman JA, Moody NR, Dumitrica T, Ballarini R, Gerberich WW (2012) Dislocation morphology and nucleation within compressed si nanospheres: a molecular dynamics study. Comput Mater Sci 54:280–286. doi: 10.1016/j.commatsci.2011.11.004 CrossRefGoogle Scholar
  29. 29.
    Hasnaoui A, Derlet PM, Van Swygenhoven H (2004) Interaction between dislocations and grain boundaries under an indenter—a md study. Acta Mater 52:2251–2258CrossRefGoogle Scholar
  30. 30.
    Joseph S, Kumar S, Bhadram VS, Narayana C (2015) Stress states in individual si particles of a cast al-si alloy: micro-Raman analysis and microstructure based modeling. J Alloys Compds 625:296–308. doi: 10.1016/j.jallcom.2014.10.207 CrossRefGoogle Scholar
  31. 31.
    Kailer A, Gogotsi YG, Nickel KG (1997) Phase transformations of silicon caused by contact loading. J Appl Phys 81(7):3057–3063. doi: 10.1063/1.364340 CrossRefGoogle Scholar
  32. 32.
    Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58:11085–11088CrossRefGoogle Scholar
  33. 33.
    Kim DE, Oh SI (2006) Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17:2259–2265CrossRefGoogle Scholar
  34. 34.
    Kim DE, Oh SI (2008) Deformation pathway to high-pressure phases of silicon during nanoindentation. J Appl Phys 104:013502CrossRefGoogle Scholar
  35. 35.
    Lee Y, Park JY, Kim SY, Jun S, Im S (2005) Atomistic simulations of incipient plasticity under Al(111) nanoindentation. Mech Mater 37:1035–1046CrossRefGoogle Scholar
  36. 36.
    Li Cx, Meng Qy, Li G, Yang Lj (2006) Atomistic simulation of the \(60^\circ \) dislocation mobility in silicon crystal. Superlattices Microstruct 40(2):113–118. doi: 10.1016/j.spmi.2006.05.004 CrossRefGoogle Scholar
  37. 37.
    Li J (2003) Atomeye: An efficient atomistic configuration viewer. Model Simul Mater Sci Eng 11:173.
  38. 38.
    Li J, Guo J, Luo H, Fang Q, Wu H, Zhang L, Liu Y (2016) Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Appl Surf Sci 364:190–200. doi: 10.1016/j.apsusc.2015.12.145 CrossRefGoogle Scholar
  39. 39.
    Li J, Van Vliet KJ, Zhu T, Yip S, Suresh S (2002) Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418:307–310CrossRefGoogle Scholar
  40. 40.
    Liu J, Zhang L, Song L, Meng L, Zeng Y, Wang M, Fang Y, Ma J (2014) Dislocation assisted face-centered-cubic/body-centered-cubic interface mixing during severe plastic deformation. J Alloys Compd 586:16–21. doi: 10.1016/j.jallcom.2013.09.061 CrossRefGoogle Scholar
  41. 41.
    Lu C, Gao Y, Michal G, Deng G, Huynh NN, Zhu H, Liu X, Tieu AK (2009) Experiment and molecular dynamics simulation of nanoindentation of body centered cubic iron. J Nanosci Nanotechnol 9:7307–7313. doi: 10.1166/jnn.2009.1793 Google Scholar
  42. 42.
    Mendelev MI, Kramer MJ, Becker CA, Asta M (2008) Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos Mag 88:1723–1750CrossRefGoogle Scholar
  43. 43.
    Noreyan A, Qi Y, Stoilov V (2008) Critical shear stresses at aluminum–silicon interfaces. Acta Mater 56(14):3461–3469. doi: 10.1016/j.actamat.2008.03.037 CrossRefGoogle Scholar
  44. 44.
    Piltz RO, Maclean JR, Clark SJ, Ackland GJ, Hatton PD, Crain J (1995) Structure and properties of silicon XII: a complex tetrahedrally bonded phase. Phys Rev B 52:4072–4085. doi: 10.1103/PhysRevB.52.4072 CrossRefGoogle Scholar
  45. 45.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19.
  46. 46.
    Rosenberger MR, Forlerer E, Schvezov CE (2007) Modeling the micro-indentation of metal matrix composites. Mat Sci Eng A 463(1–2):275–283. doi: 10.1016/j.msea.2006.09.119 CrossRefGoogle Scholar
  47. 47.
    Ruestes CJ, Bringa EM, Gao Y, Urbassek HM (2017) Molecular dynamics modeling of nanoindentation. In: Tiwari A, Natarajan S (eds) Applied nanoindentation in advanced materials. Wiley, Chichester, p 315Google Scholar
  48. 48.
    Saidi P, Frolov T, Hoyt JJ, Asta M (2014) An angular embedded atom method interatomic potential for the aluminum–silicon system. Model Simul Mater Sci Eng 22(5):055010CrossRefGoogle Scholar
  49. 49.
    Salehinia I, Shao S, Wang J, Zbib HM (2015) Interface structure and the inception of plasticity in Nb/NbC nanolayered composites. Acta Mater 86:331–340. doi: 10.1016/j.actamat.2014.12.026 CrossRefGoogle Scholar
  50. 50.
    Salehinia I, Wang J, Bahr DF, Zbib HM (2014) Molecular dynamics simulations of plastic deformation in Nb/NbC multilayers. Int J Plast 59:119–132. doi: 10.1016/j.ijplas.2014.03.010 CrossRefGoogle Scholar
  51. 51.
    Shen YL, Blada CB, Williams JJ, Chawla N (2012) Cyclic indentation behavior of metal-ceramic nanolayered composites. Mater Sci Eng A 557:119–125. doi: 10.1016/j.msea.2012.05.103 CrossRefGoogle Scholar
  52. 52.
    Shin I, Carter EA (2013) Possible origin of the discrepancy in peierls stresses of fcc metals: first-principles simulations of dislocation mobility in aluminum. Phys Rev B 88:064106. doi: 10.1103/PhysRevB.88.064106 CrossRefGoogle Scholar
  53. 53.
    Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of Si. Phys Rev B 31:5262–5271CrossRefGoogle Scholar
  54. 54.
    Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model Simul Mater Sci Eng 18:015,012.
  55. 55.
    Stukowski A (2012) Structure identification methods for atomistic simulations of crystalline materials. Model Simul Mater Sci Eng 20:045021CrossRefGoogle Scholar
  56. 56.
    Stukowski A, Arsenlis A (2012) On the elastic-plastic decomposition of crystal deformation at the atomic scale. Model Simul Mater Sci Eng 20:035012CrossRefGoogle Scholar
  57. 57.
    Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng 20:085007CrossRefGoogle Scholar
  58. 58.
    Su JF, Nie X, Stoilov V (2010) Characterization of fracture and debonding of Si particles in AlSi alloys. Mat Sci Eng A 527:7168–7175CrossRefGoogle Scholar
  59. 59.
    Surappa MK, Rohatgi RK (1981) Preparation and properties of cast aluminium-ceramic particle composites. J Mater Sci 16:983–993CrossRefGoogle Scholar
  60. 60.
    Szlufarska I (2006) Atomistic simulations of nanoindentation. Mater Today 9:42–50CrossRefGoogle Scholar
  61. 61.
    Tersoff J (1989) Modeling solid-state chemistry: interatomic potentials for multicomponent systems. Phys Rev B 39:5566–5568CrossRefGoogle Scholar
  62. 62.
    Tsuru T, Kaji Y, Matsunaka D, Shibutani Y (2010) Incipient plasticity of twin and stable/unstable grain boundaries during nanoindentation in copper. Phys Rev B 82:024101. doi: 10.1103/PhysRevB.82.024101 CrossRefGoogle Scholar
  63. 63.
    Tsuru T, Shibutani Y (2006) Atomistic simulations of elastic deformation and dislocation nucleation in Al under indentation-induced stress distribution. Model Simul Mater Sci Eng 14:S55CrossRefGoogle Scholar
  64. 64.
    Tsuru T, Shibutani Y (2007) Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu. Phys Rev B 75:035415CrossRefGoogle Scholar
  65. 65.
    Tsuru T, Shibutani Y, Kaji Y (2009) Fundamental interaction process between pure edge dislocation and energetically stable grain boundary. Phys Rev B 79:012104. doi: 10.1103/PhysRevB.79.012104 CrossRefGoogle Scholar
  66. 66.
    Wagner RJ, Ma L, Tavazza F, Levine LE (2008) Dislocation nucleation during nanoindentation of aluminum. J Appl Phys 104(11):114311. doi: 10.1063/1.3021305 CrossRefGoogle Scholar
  67. 67.
    Ward DK, Curtin WA, Qi Y (2006) Aluminum-silicon interfaces and nanocomposites: a molecular dynamics study. Compos Sci Technol 66(9):1151–1161. doi: 10.1016/j.compscitech.2005.10.024 CrossRefGoogle Scholar
  68. 68.
    Ward DK, Curtin WA, Qi Y (2006) Mechanical behavior of aluminum-silicon nanocomposites: a molecular dynamics study. Acta Mater 54(17):4441–4451. doi: 10.1016/j.actamat.2006.05.022 CrossRefGoogle Scholar
  69. 69.
    Xia S, Qi Y, Perry T, Kim KS (2009) Strength characterization of Al/Si interfaces: a hybrid method of nanoindentation and finite element analysis. Acta Mater 57(3):695–707. doi: 10.1016/j.actamat.2008.10.011 CrossRefGoogle Scholar
  70. 70.
    Yang B, Vehoff H (2007) Dependence of nanohardness upon indentation size and grain size—a local examination of the interaction between dislocations and grain boundaries. Acta Mater 55:849–856CrossRefGoogle Scholar
  71. 71.
    Yang W, Ayoub G, Salehinia I, Mansoor B, Zbib H (2017) Deformation mechanisms in Ti/TiN multilayer under compressive loading. Acta Mater 122:99–108. doi: 10.1016/j.actamat.2016.09.039 CrossRefGoogle Scholar
  72. 72.
    Yuan Z, Li F, Zhang P, Chen B, Xue F (2014) Mechanical properties study of particles reinforced aluminum matrix composites by micro-indentation experiments. Chin J Aeronaut 27(2):397–406. doi: 10.1016/j.cja.2014.02.010 CrossRefGoogle Scholar
  73. 73.
    Yuan Z, Li F, Zhang P, Chen B, Xue F, Hussain MZ (2014) Further investigation of particle reinforced aluminum matrix composites by indentation experiments. J Mater Res 29:586–595CrossRefGoogle Scholar
  74. 74.
    Zhang HL (2011) Calculation of shuffle \(60^{\circ }\) dislocation width and peierls barrier and stress for semiconductors silicon and germanium. Eur Phys J B 81(2):179–183. doi: 10.1140/epjb/e2011-10932-5 CrossRefGoogle Scholar
  75. 75.
    Zhang Z, Stukowski A, Urbassek HM (2016) Interplay of dislocation-based plasticity and phase transformation during Si nanoindentation. Comput Mater Sci 119:82–89. doi: 10.1016/j.commatsci.2016.03.039 CrossRefGoogle Scholar
  76. 76.
    Ziegenhain G, Hartmaier A, Urbassek HM (2009) Pair vs many-body potentials: influence on elastic and plastic behavior in nanoindentation of fcc metals. J Mech Phys Sol 57:1514–1526. doi: 10.1016/j.jmps.2009.05.011 CrossRefGoogle Scholar
  77. 77.
    Ziegenhain G, Urbassek HM (2009) Effect of material stiffness on hardness: a computational study based on model potentials. Philos Mag 89:2225–2238. doi: 10.1080/14786430903022697 CrossRefGoogle Scholar
  78. 78.
    Ziegenhain G, Urbassek HM, Hartmaier A (2010) Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: a simulational study. J Appl Phys 107:061807CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Physics Department and Research Center OPTIMASUniversity KaiserslauternKaiserslauternGermany

Personalised recommendations