Advertisement

Journal of Materials Science

, Volume 52, Issue 24, pp 13829–13840 | Cite as

Interfacial behaviour from pull-out tests of steel and aluminium fibres in unsaturated polyester matrix

  • Moez Frikha
  • Hedi Nouri
  • Sofiane GuessasmaEmail author
  • Frederic Roger
  • Chedly Bradai
Composites

Abstract

This study aims at implementing an interfacial model to capture the role of interfaces in polyester-based composites reinforced by metallic fibres. A pull-out test of single aluminium and steel fibres embedded in unsaturated polyester matrix is performed. Finite element computation is performed to simulate the typical response of the pull-out test based on an interfacial model. The implemented model relies on a nonlinear relationship assumed between the interfacial shear and interfacial separation. A sensitivity analysis is conducted to reveal the effect of each parameter of the interfacial model. The identification of these parameters with respect to the experimental conditions is also attempted. The predictions show a perfect matching with the experimental trends if a two-term expression is accounted for as an interfacial response. The model outcome reveals superior interfacial performance of the aluminium/unsaturated polyester composite.

References

  1. 1.
    Mouritz AP, Gellert E, Burchill P, Challis K (2001) Compos Struct 53:21. doi: 10.1016/S0263-8223(00)00175-6 CrossRefGoogle Scholar
  2. 2.
    Bagherpour S (2012). doi: 10.5772/48697
  3. 3.
    Zia KM, Noreen A, Zuber M, Tabasum S, Mujahid M (2016) Int J Biol Macromol 82:1028. doi: 10.1016/j.ijbiomac.2015.10.040 CrossRefGoogle Scholar
  4. 4.
    Thiruchitrambalam M, Athijayamani A, Sathiyamurthy S, Abu Thaheer AS (2010) J Nat Fibers 7:307. doi: 10.1080/15440478.2010.529299 CrossRefGoogle Scholar
  5. 5.
    Gunes O, Lau D, Tuakta C, Buyukozturk O (2013) Constr Build Mater 49:915. doi: 10.1016/j.conbuildmat.2012.10.017 CrossRefGoogle Scholar
  6. 6.
    Avci A, Arikan H, Akdemir A (2004) Cem Concr Res 34:429. doi: 10.1016/j.cemconres.2003.08.027 CrossRefGoogle Scholar
  7. 7.
    Durai Prabhakaran RT, Andersen TL, Bech JI, Lilholt H (2016) Polym Compos 37:627. doi: 10.1002/pc.23220 CrossRefGoogle Scholar
  8. 8.
    Ferran EMD, Harris B (1970) J Compos Mater 4:62CrossRefGoogle Scholar
  9. 9.
    Samanci A (2012) Constr Build Mater 26:167. doi: 10.1016/j.conbuildmat.2011.06.006 CrossRefGoogle Scholar
  10. 10.
    Cooper GA, Sillwood JM (1972) J Mater Sci 7:325. doi: 10.1007/Bf00555634 CrossRefGoogle Scholar
  11. 11.
    DiFrancia C, Ward TC, Claus RO (1996) Compos Part A Appl S 27:613. doi: 10.1016/1359-835x(96)00063-2 CrossRefGoogle Scholar
  12. 12.
    Piggott MR (1987) Compos Sci Technol 30:295. doi: 10.1016/0266-3538(87)90017-0 CrossRefGoogle Scholar
  13. 13.
    Fu SY, Yue CY, Hu X, Mai YW (2000) Compos Sci Technol 60:569. doi: 10.1016/S0266-3538(99)00157-8 CrossRefGoogle Scholar
  14. 14.
    Yang QS, Qin QH, Peng XR (2003) Compos Struct 61:193. doi: 10.1016/S0263-8223(03)00066-7 CrossRefGoogle Scholar
  15. 15.
    Hejazi SM, Sheikhzadeh M, Abtahi SM, Zadhoush A (2013) Fiber Polym 14:277. doi: 10.1007/s12221-013-0277-2 CrossRefGoogle Scholar
  16. 16.
    Beckert W, Lauke B (1997) Compos Sci Technol 57:1689CrossRefGoogle Scholar
  17. 17.
    Lee Y, Kang ST, Kim JK (2010) Constr Build Mater 24:2030. doi: 10.1016/j.conbuildmat.2010.03.009 CrossRefGoogle Scholar
  18. 18.
    Li CY, Mobasher B (1998) Adv Cem Based Mater 7:123. doi: 10.1016/S1065-7355(97)00087-4 CrossRefGoogle Scholar
  19. 19.
    Jia YY, Yan WY, Liu HY (2012) Comput Mater Sci 62:79. doi: 10.1016/j.commatsci.2012.05.019 CrossRefGoogle Scholar
  20. 20.
    Ramezani M, Vilches J, Neitzert T (2013) Int J Adv Struct Eng 5:24. doi: 10.1186/2008-6695-5-24 CrossRefGoogle Scholar
  21. 21.
    Banholzer B, Brameshuber W, Jung W (2005) Cem Concr Compos 27:93. doi: 10.1016/j.cemconcomp.2004.01.006 CrossRefGoogle Scholar
  22. 22.
    Rjafiallah S, Guessasma S, Lourdin D (2009) Comp Part A Appl Sci Manuf 40:130. doi: 10.1016/j.compositesa.2008.10.010 CrossRefGoogle Scholar
  23. 23.
    McMican R (2012) Reinf Plast 56:29. doi: 10.1016/s0034-3617(12)70110-8 CrossRefGoogle Scholar
  24. 24.
    Hbib M, Guessasma S, Bassir D, Benseddiq N (2011) Compos Sci Technol 71:1419. doi: 10.1016/j.compscitech.2011.05.015 CrossRefGoogle Scholar
  25. 25.
    Upadhyaya P, Kumar S (2015) Int J Adhes Adhes 60:54. doi: 10.1016/j.ijadhadh.2015.03.006 CrossRefGoogle Scholar
  26. 26.
    Kumar S, Khan MA (2016) Int J Adhes Adhes 68:317. doi: 10.1016/j.ijadhadh.2016.04.010 CrossRefGoogle Scholar
  27. 27.
    Tipireddy R, Kumar S (2017) Int J Adhes Adhes. doi: 10.1016/j.ijadhadh.2017.02.010 Google Scholar
  28. 28.
    Kundalwal SI, Kumar S (2016) Mech Mater 102:117. doi: 10.1016/j.mechmat.2016.09.002 CrossRefGoogle Scholar
  29. 29.
    Liu P, Tao W, Guo Y (2005) J Zhejiang Univ Sci 6:8. doi: 10.1631/jzus.2005.AS0008 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratoires des Systèmes ElectromécaniquesEcole Nationale d’Ingénieurs de SfaxSfaxTunisia
  2. 2.LGCgE-GCEIMT Lille DouaiDouaiFrance
  3. 3.UR1268 Biopolymères Interactions Assemblages, INRANantesFrance
  4. 4.TPCIMIMT Lille DouaiDouaiFrance

Personalised recommendations