Journal of Materials Science

, Volume 52, Issue 24, pp 13799–13811 | Cite as

Mesoscale evolution of non-graphitizing pyrolytic carbon in aligned carbon nanotube carbon matrix nanocomposites

  • Itai Y. Stein
  • Ashley L. Kaiser
  • Alexander J. Constable
  • Luiz Acauan
  • Brian L. Wardle


Polymer-derived pyrolytic carbons (PyCs) are highly desirable building blocks for high-strength low-density ceramic meta-materials, and reinforcement with nanofibers is of interest to address brittleness and tailor multi-functional properties. The properties of carbon nanotubes (CNTs) make them leading candidates for nanocomposite reinforcement, but how CNT confinement influences the structural evolution of the PyC matrix is unknown. Here, the influence of aligned CNT proximity interactions on nano- and mesoscale structural evolution of phenol-formaldehyde-derived PyCs is established as a function of pyrolysis temperature (\(T_{\mathrm {p}}\)) using X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy. Aligned CNT PyC matrix nanocomposites are found to evolve faster at the mesoscale by plateauing in crystallite size at \(T_{\mathrm {p}}\) \(\sim\)800 \(^{\circ }\hbox {C}\), which is more than \(200\,\,^{\circ }\hbox {C}\) below that of unconfined PyCs. Since the aligned CNTs used here exhibit \(\sim\)80 nm average separations and \(\sim\)8 nm diameters, confinement effects are surprisingly not found to influence PyC structure on the atomic-scale at \(T_{\mathrm {p}}\) \(\le \)1400 \(^{\circ }\hbox {C}\). Since CNT confinement could lead to anisotropic crystallite growth in PyCs synthesized below \(\sim\)1000 \(^{\circ }\hbox {C}\), and recent modeling indicates that more slender crystallites increase PyC hardness, these results inform fabrication of PyC-based meta-materials with unrivaled specific mechanical properties.



I.Y.S. was supported in part by the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program. A.L.K. and A.J.C. were supported by the CMSE Research Experience for Undergraduates Program, as part of the MRSEC Program of the National Science Foundation under Grant Number DMR-08-19762, and the MIT Materials Processing Center. This work was partially supported by Airbus, Embraer, Lockheed Martin, Saab AB, ANSYS, Hexcel, Saertex, and TohoTenax through MIT’s Nano-Engineered Composite aerospace Structures (NECST) Consortium. The authors thank P. Boisvert, T. McClure, and C. Settens for helpful discussions, and the members of necstlab at MIT for technical support and advice. This work made use of the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under award number DMR-08-19762, and utilized the core facilities at the Institute for Soldier Nanotechnologies at MIT, supported in part by the U.S. Army Research Office under contracts W911NF-07-D-0004 and W911NF-13-D-0001.

Compliance with ethical standards

Conflicts of interest

The authors have no conflicts of interest related to this work.

Supplementary material

10853_2017_1468_MOESM1_ESM.pdf (5.5 mb)
Supplementary material 1 (pdf 5597 KB)


  1. 1.
    Eckel ZC, Zhou C, Martin JH, Jacobsen AJ, Carter WB, Schaedler TA (2015) Additive manufacturing of polymer-derived ceramics. Science 351:58–62. doi: 10.1126/science.aad2688 CrossRefGoogle Scholar
  2. 2.
    Bauer J, Schroer A, Schwaiger R, Kraft O (2016) Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15:438–443. doi: 10.1038/nmat4561 CrossRefGoogle Scholar
  3. 3.
    Vakifahmetoglu C, Zeydanli D, Colombo P (2016) Porous polymer derived ceramics. Mater. Sci. Eng. R 106:1–30. doi: 10.1016/j.mser.2016.05.001 CrossRefGoogle Scholar
  4. 4.
    Jang D, Meza LR, Greer F, Greer JR (2013) Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nat. Mater. 12:893–898. doi: 10.1038/nmat3738 CrossRefGoogle Scholar
  5. 5.
    Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, Kuntz JD, Biener MM, Ge Q, Jackson JA, Kucheyev SO, Fang NX, Spadaccini CM (2014) Ultralight, ultrastiff mechanical metamaterials. Science 344:1373–1377. doi: 10.1126/science.1252291 CrossRefGoogle Scholar
  6. 6.
    Bauer J, Hengsbach S, Tesari I, Schwaiger R, Kraft O (2014) High-strength cellular ceramic composites with 3d microarchitecture. Proc. Natl. Acad. Sci. U.S.A. 111:2453–2458. doi: 10.1073/pnas.1315147111 CrossRefGoogle Scholar
  7. 7.
    Meza LR, Zelhofer AJ, Clarke N, Mateos AJ, Kochmann DM, Greer JR (2015) Resilient 3d hierarchical architected metamaterials. Proc. Natl. Acad. Sci. U.S.A. 112:11502–11507. doi: 10.1073/pnas.1509120112 CrossRefGoogle Scholar
  8. 8.
    Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat. Mater. 14:23–36. doi: 10.1038/NMAT4089 CrossRefGoogle Scholar
  9. 9.
    Meza LR, Das S, Greer JR (2014) Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345:1322–1326. doi: 10.1126/science.1255908 CrossRefGoogle Scholar
  10. 10.
    Hofmann DC, Suh J-Y, Wiest A, Duan G, Lind M-L, Demetriou MD, Johnson WL (2008) Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451:1085–1089. doi: 10.1038/nature06598 CrossRefGoogle Scholar
  11. 11.
    Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322:1516–1520. doi: 10.1126/science.1164865 CrossRefGoogle Scholar
  12. 12.
    Ritchie RO (2011) The conflicts between strength and toughness. Nat. Mater. 10:817–822. doi: 10.1038/nmat3115 CrossRefGoogle Scholar
  13. 13.
    Martin JJ, Fiore BE, Erb RM (2015) Designing bioinspired composite reinforcement architectures via 3d magnetic printing. Nat. Commun. 6:8641-1–8641-7. doi: 10.1038/ncomms9641 Google Scholar
  14. 14.
    Byrne MT, Gun’ko YK (2010) Recent advances in research on carbon nanotube-polymer composites. Adv. Mater. 22(15):1672–1688. doi: 10.1002/adma.200901545 CrossRefGoogle Scholar
  15. 15.
    Jia X, Zhang Q, Zhao M-Q, Xu G-H, Huang J-Q, Qian W, Lu Y, Wei F (2012) Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. J. Mater. Chem. 22:7050–7056. doi: 10.1039/C2JM15359A CrossRefGoogle Scholar
  16. 16.
    Siochi EJ, Harrison JS (2015) Structural nanocomposites for aerospace applications. MRS Bull. 40:829–835. doi: 10.1557/mrs.2015.228 CrossRefGoogle Scholar
  17. 17.
    Cho J, Boccaccini AR, Shaffer MSP (2009) Ceramic matrix composites containing carbon nanotubes. J. Mater. Sci. 44:1934–1951. doi: 10.1007/s10853-009-3262-9 CrossRefGoogle Scholar
  18. 18.
    Cho J, Inam F, Reece MJ, Chlup Z, Dlouhy I, Shaffer MSP, Boccaccini AR (2011) Carbon nanotubes: Do they toughen brittle matrices? J. Mater. Sci. 46:4770–4779. doi: 10.1007/s10853-011-5387-x CrossRefGoogle Scholar
  19. 19.
    Gu Z, Yang Y, Li K, Tao X, Eres G, Howe JY, Zhang L, Li X, Pan Z (2011) Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon 49:2475–2482. doi: 10.1016/j.carbon.2011.02.016 CrossRefGoogle Scholar
  20. 20.
    Kobayashi K, Sugawara S, Toyoda S, Honda H (1968) An X-ray diffraction study of phenol-formaldehyde resin carbons. Carbon 6:359–363. doi: 10.1016/0008-6223(68)90030-4 CrossRefGoogle Scholar
  21. 21.
    Shioya M, Ojima T, Yamashita J (2001) Activation energy of structural development for phenol formaldehyde resin-based carbon fibers. Carbon 39:1869–1878. doi: 10.1016/S0008-6223(00)00312-2 CrossRefGoogle Scholar
  22. 22.
    Stein IY, Constable AJ, Morales-Medina N, Sackier CV, Devoe ME, Vincent HM, Wardle BL (2017) Structure–mechanical property relations of non-graphitizing pyrolytic carbon synthesized at low temperatures. Carbon 117:411–420. doi: 10.1016/j.carbon.2017.03.001 CrossRefGoogle Scholar
  23. 23.
    DeVolder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539. doi: 10.1126/science.1222453 CrossRefGoogle Scholar
  24. 24.
    Liu L, Ma W, Zhang Z (2011) Macroscopic carbon nanotube assemblies: preparation, properties, and potential applications. Small 7:1504–1520. doi: 10.1002/smll.201002198 CrossRefGoogle Scholar
  25. 25.
    Allen R, Ghita O, Farmer B, Beard M, Evans K (2013) Mechanical testing and modelling of a vertically aligned carbon nanotube composite structure. Compos. Sci. Technol. 77:1–7. doi: 10.1016/j.compscitech.2013.01.001 CrossRefGoogle Scholar
  26. 26.
    Cebeci H, Guzmán de Villoria R, Hart AJ, Wardle BL (2009) Multifunctional properties of high volume fraction aligned carbon nanotube polymer composites with controlled morphology. Compos. Sci. Technol. 69:2649–2656. doi: 10.1016/j.compscitech.2009.08.006 CrossRefGoogle Scholar
  27. 27.
    Handlin D, Stein IY, Guzman de Villoria R, Cebeci H, Parsons EM, Socrate S, Scotti S, Wardle BL (2013) Three-dimensional elastic constitutive relations of aligned carbon nanotube architectures. J. Appl. Phys. 114:224310-1–224310-5. doi: 10.1063/1.4842117 CrossRefGoogle Scholar
  28. 28.
    Stein IY, Wardle BL (2016) Mechanics of aligned carbon nanotube polymer matrix nanocomposites simulated via stochastic three-dimensional morphology. Nanotechnology 27:035701-1–035701-7. doi: 10.1088/0957-4484/27/3/035701 CrossRefGoogle Scholar
  29. 29.
    Herasati S, Zhang L (2014) A new method for characterizing and modeling the waviness and alignment of carbon nanotubes in composites. Compos. Sci. Technol. 100:136–142. doi: 10.1016/j.compscitech.2014.06.004 CrossRefGoogle Scholar
  30. 30.
    Dastgerdi JN, Marquis G, Salimi M (2014) Micromechanical modeling of nanocomposites considering debonding and waviness of reinforcements. Compos. Struct. 110:1–6. doi: 10.1016/j.compstruct.2013.11.017 CrossRefGoogle Scholar
  31. 31.
    Omidi M, H.Rokni DT, Milani AS, Seethaler RJ, Arasteh R (2010) Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures. Carbon 48:3218–3228. doi: 10.1016/j.carbon.2010.05.007 CrossRefGoogle Scholar
  32. 32.
    Pantano A, Mantione P (2010) A numerical–analytical model for the characterization of composites reinforced by carbon nanotubes. Appl. Phys. A 99:895–902. doi: 10.1007/s00339-010-5635-y CrossRefGoogle Scholar
  33. 33.
    Yang BJ, Souri H, Kim S, Ryu S, Lee HK (2014) An analytical model to predict curvature effects of the carbon nanotube on the overall behavior of nanocomposites. J. Appl. Phys. 116:033511-1–033511-6. doi: 10.1063/1.4890519 Google Scholar
  34. 34.
    Naskar AK, Keum JK, Boeman RG (2016) Polymer matrix nanocomposites for automotive structural components. Nat. Nanotechnol. 11:1026–1030. doi: 10.1038/nnano.2016.262 CrossRefGoogle Scholar
  35. 35.
    Wardle BL, Saito DS, García EJ, Hart AJ, Guzmán de Villoria R, Verploegen EA (2008) Fabrication and characterization of ultrahigh-volume-fraction aligned carbon nanotube polymer composites. Adv. Mater. 20:2707–2714. doi: 10.1002/adma.200800295 CrossRefGoogle Scholar
  36. 36.
    Stein IY, Wardle BL (2014) Morphology and processing of aligned carbon nanotube carbon matrix nanocomposites. Carbon 68:807–813. doi: 10.1016/j.carbon.2013.12.001 CrossRefGoogle Scholar
  37. 37.
    Franklin RE (1951) Crystallite growth in graphitizing and non-graphitizing carbons. Proc. R. Soc. Lond. Ser. A 209:196–218. doi: 10.1098/rspa.1951.0197 CrossRefGoogle Scholar
  38. 38.
    Emmerich F (1995) Evolution with heat treatment of crystallinity in carbons. Carbon 33:1709–1715. doi: 10.1016/0008-6223(95)00127-8 CrossRefGoogle Scholar
  39. 39.
    Harris PJF (1997) Structure of non-graphitising carbons. Int. Mater. Rev. 42:206–218. doi: 10.1179/imr.1997.42.5.206 CrossRefGoogle Scholar
  40. 40.
    Harris PJF (2013) Fullerene-like models for microporous carbon. J. Mater. Sci. 48:565–577. doi: 10.1007/s10853-012-6788-1 CrossRefGoogle Scholar
  41. 41.
    Zhang Y, Tajaddod N, Song K, Minus ML (2015) Low temperature graphitization of interphase polyacrylonitrile (PAN). Carbon 91:479–493. doi: 10.1016/j.carbon.2015.04.088 CrossRefGoogle Scholar
  42. 42.
    Papkov D, Beese AM, Goponenko A, Zou Y, Naraghi M, Espinosa HD, Saha B, Schatz GC, Moravsky A, Loutfy R, Nguyen ST, Dzenis Y (2013) Extraordinary improvement of the graphitic structure of continuous carbon nanofibers templated with double wall carbon nanotubes. ACS Nano 7:126–142. doi: 10.1021/nn303423x CrossRefGoogle Scholar
  43. 43.
    Sui G, Xue S, Bi H, Yang Q, Yang X (2013) Desirable electrical and mechanical properties of continuous hybrid nano-scale carbon fibers containing highly aligned multi-walled carbon nanotubes. Carbon 64:72–83. doi: 10.1016/j.carbon.2013.07.035 CrossRefGoogle Scholar
  44. 44.
    Chae HG, Minus ML, Rasheed A, Kumar S (2007) Stabilization and carbonization of gel spun polyacrylonitrile/single wall carbon nanotube composite fibers. Polymer 48:3781–3789. doi: 10.1016/j.polymer.2007.04.072 CrossRefGoogle Scholar
  45. 45.
    Chae HG, Choi YH, Minus ML, Kumar S (2009) Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Compos. Sci. Technol. 69:406–413. doi: 10.1016/j.compscitech.2008.11.008 CrossRefGoogle Scholar
  46. 46.
    Şahin K, Fasanella NA, Chasiotis I, Lyons KM, Newcomb BA, Kamath MG, Chae HG, Kumar S (2014) High strength micron size carbon fibers from polyacrylonitrile-carbon nanotube precursors. Carbon 77:442–453. doi: 10.1016/j.carbon.2014.05.049 CrossRefGoogle Scholar
  47. 47.
    Newcomb BA, Giannuzzi LA, Lyons KM, Gulgunje PV, Gupta K, Liu Y, Kamath M, McDonald K, Moon J, Feng B, Peterson G, Chae HG, Kumar S (2015) High resolution transmission electron microscopy study on polyacrylonitrile/carbon nanotube based carbon fibers and the effect of structure development on the thermal and electrical conductivities. Carbon 93:502–514. doi: 10.1016/j.carbon.2015.05.037 CrossRefGoogle Scholar
  48. 48.
    Han Y, Li S, Chen F, Zhao T (2016) Multi-scale alignment construction for strong and conductive carbon nanotube/carbon composites. Mater. Today Commun. 6:56–68. doi: 10.1016/j.mtcomm.2015.12.002 CrossRefGoogle Scholar
  49. 49.
    Vázquez-Santos MB, Geissler E, László K, Rouzaud J-N, Martínez-Alonso A, Tascón JMD (2012) Graphitization of highly porous carbons derived from poly(p-phenylene benzobisoxazole). Carbon 50:2929–2940. doi: 10.1016/j.carbon.2012.02.062 CrossRefGoogle Scholar
  50. 50.
    Hu C, Sedghi S, Silvestre-Albero A, Andersson GG, Sharma A, Pendleton P, guez Reinoso FR, Kaneko K, Biggs MJ (2015) Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway. Carbon 85:147–158. doi: 10.1016/j.carbon.2014.12.098 CrossRefGoogle Scholar
  51. 51.
    Faber K, Badaczewski F, Oschatz M, Mondin G, Nickel W, Kaskel S, Smarsly BM (2014) In-depth investigation of the carbon microstructure of silicon carbide-derived carbons by wide-angle X-ray scattering. J. Phys. Chem. C 118:15705–15715. doi: 10.1021/jp502832x CrossRefGoogle Scholar
  52. 52.
    Iwashita N, Park CR, Fujimoto H, Shiraishi M, Inagaki M (2004) Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42:701–714. doi: 10.1016/j.carbon.2004.02.008 CrossRefGoogle Scholar
  53. 53.
    Zickler GA, Smarsly B, Gierlinger N, Peterlik H, Paris O (2006) A reconsideration of the relationship between the crystallite size la of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon 44:3239–3246. doi: 10.1016/j.carbon.2006.06.029 CrossRefGoogle Scholar
  54. 54.
    Badenhorst H (2014) Microstructure of natural graphite flakes revealed by oxidation: limitations of XRD and raman techniques for crystallinity estimates. Carbon 66:674–690. doi: 10.1016/j.carbon.2013.09.065 CrossRefGoogle Scholar
  55. 55.
    McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108:2646–2687. doi: 10.1021/cr068076m CrossRefGoogle Scholar
  56. 56.
    Lee J, Stein IY, Kessler SS, Wardle BL (2015) Aligned carbon nanotube film enables thermally induced state transformations in layered polymeric materials. ACS Appl. Mater. Interfaces 7:8900–8905. doi: 10.1021/acsami.5b01544 CrossRefGoogle Scholar
  57. 57.
    Jacobs DS (2016) Constitutive model of aligned carbon nanotube/nafion nanocomposite ionic electroactive polymer actuators. Master’s thesis, Massachusetts Institute of Technology.
  58. 58.
    Lee J, Stein IY, Devoe ME, Lewis DJ, Lachman N, Kessler SS, Buschhorn ST, Wardle BL (2015) Impact of carbon nanotube length on electron transport in aligned carbon nanotube films. Appl. Phys. Lett. 106:053110-1–053110-5. doi: 10.1063/1.4907608 Google Scholar
  59. 59.
    Stein IY, Wardle BL (2013) Coordination number model to quantify packing morphology of aligned nanowire arrays. Phys. Chem. Chem. Phys. 15:4033–4040. doi: 10.1039/C3CP43762K CrossRefGoogle Scholar
  60. 60.
    Stein IY, Lewis DJ, Wardle BL (2015) Aligned carbon nanotube array stiffness from stochastic three-dimensional morphology. Nanoscale 7:19426–19431. doi: 10.1039/C5NR06436H CrossRefGoogle Scholar
  61. 61.
    Stein IY, Wardle BL (2016) Packing morphology of wavy nanofiber arrays. Phys. Chem. Chem. Phys. 18:694–699. doi: 10.1039/C5CP06381G CrossRefGoogle Scholar
  62. 62.
    Mutha HK, Lu Y, Stein IY, Cho HJ, Suss ME, Laoui T, Thompson CV, Wardle BL, Wang EN (2017) Porosimetry and packing morphology of vertically-aligned carbon nanotube arrays via impedance spectroscopy. Nanotechnology 28:05LT01-1–05LT01-6. doi: 10.1088/1361-6528/aa53aa CrossRefGoogle Scholar
  63. 63.
    Mitchell RR, Yamamoto N, Cebeci H, Wardle BL, Thompson CV (2013) A technique for spatially-resolved contact resistance-free electrical conductivity measurements of aligned-carbon nanotube/polymer nanocomposites. Compos. Sci. Technol. 74:205–210. doi: 10.1016/j.compscitech.2012.11.003 CrossRefGoogle Scholar
  64. 64.
    Stein IY, Vincent HM, Steiner SA, Colombini E, Wardle BL (2013) Processing and mechanical property characterization of aligned carbon nanotube carbon matrix nanocomposites. In: 54th AIAA structures, structural dynamics, and materials (SDM) conference, Boston, MA. doi: 10.2514/6.2013-1583
  65. 65.
    Stein IY (2013) Synthesis and characterization of next-generation multifunctional material architectures: aligned carbon nanotube carbon matrix nanocomposites. Master’s thesis, Massachusetts Institute of Technology.
  66. 66.
    Stein IY (2016) Impact of morphology and confinement effects on the properties of aligned nanofiber architectures. Ph.D. thesis, Massachusetts Institute of Technology.
  67. 67.
    Smith MW, Dallmeyer I, Johnson TJ, Brauer CS, McEwen J-S, Espinal JF, Garcia-Perez M (2016) Structural analysis of char by Raman spectroscopy: improving band assignments through computational calculations from first principles. Carbon 100:678–692. doi: 10.1016/j.carbon.2016.01.031 CrossRefGoogle Scholar
  68. 68.
    Tsaneva V, Kwapinski W, Teng X, Glowacki B (2014) Assessment of the structural evolution of carbons from microwave plasma natural gas reforming and biomass pyrolysis using Raman spectroscopy. Carbon 80:617–628. doi: 10.1016/j.carbon.2014.09.005 CrossRefGoogle Scholar
  69. 69.
    Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61:14095–14107. doi: 10.1103/PhysRevB.61.14095 CrossRefGoogle Scholar
  70. 70.
    Mallet-Ladeira P, Puech P, Weisbecker P, Vignoles GL, Monthioux M (2014) Behavior of Raman d band for pyrocarbons with crystallite size in the 2–5 nm range. Appl. Phys. A 114:759–763. doi: 10.1007/s00339-013-7671-x CrossRefGoogle Scholar
  71. 71.
    Mallet-Ladeira P, Puech P, Toulouse C, Cazayous M, Ratel-Ramond N, Weisbecker P, Vignoles GL, Monthioux M (2014) A Raman study to obtain crystallite size of carbon materials: a better alternative to the Tuinstra–Koenig law. Carbon 80:629–639. doi: 10.1016/j.carbon.2014.09.006 CrossRefGoogle Scholar
  72. 72.
    Li X, Li K, Li H, Wei J, Wang C (2007) Microstructures and mechanical properties of carbon/carbon composites reinforced with carbon nanofibers/nanotubes produced in situ. Carbon 45:1662–1668. doi: 10.1016/j.carbon.2007.03.042 CrossRefGoogle Scholar
  73. 73.
    Li Z, Lu C, Xia Z, Zhou Y, Luo Z (2007) X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 45:1686–1695. doi: 10.1016/j.carbon.2007.03.038 CrossRefGoogle Scholar
  74. 74.
    Ferrari AC, Basko DM (2013) Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8:235–246. doi: 10.1038/nnano.2013.46 CrossRefGoogle Scholar
  75. 75.
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10:751–758. doi: 10.1021/nl904286r CrossRefGoogle Scholar
  76. 76.
    Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107:071301-1–071301-70. doi: 10.1063/1.3318261 CrossRefGoogle Scholar
  77. 77.
    Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97:187401-1–187401-4. doi: 10.1103/PhysRevLett.97.187401 Google Scholar
  78. 78.
    Amadei CA, Stein IY, Silverberg GJ, Wardle BL, Vecitis CD (2016) Fabrication and chemomechanical tuning of graphene oxide nanoscrolls. Nanoscale 8:6783–6791. doi: 10.1039/C5NR07983G CrossRefGoogle Scholar
  79. 79.
    Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J. Chem. Phys. 53:1126–1130. doi: 10.1063/1.1674108 CrossRefGoogle Scholar
  80. 80.
    Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size \(L_{a}\) of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88:163106-1–163106-3. doi: 10.1063/1.2196057 CrossRefGoogle Scholar
  81. 81.
    Latham CD, Heggie MI, Alatalo M, Öberg S, Briddon PR (2013) The contribution made by lattice vacancies to the Wigner effect in radiation-damaged graphite. J. Phys. Condens. Matter 25:135403-1–135403-13. doi: 10.1088/0953-8984/25/13/135403 CrossRefGoogle Scholar
  82. 82.
    Stein IY, Lachman N, Devoe ME, Wardle BL (2014) Exohedral physisorption of ambient moisture scales non-monotonically with fiber proximity in aligned carbon nanotube arrays. ACS Nano 8:4591–4599. doi: 10.1021/nn5002408 CrossRefGoogle Scholar
  83. 83.
    Lachman N, Stein IY, Ugur A, Lidston DL, Gleason KK, Wardle BL (2017) Synthesis of polymer bead nano-necklaces on aligned carbon nanotube scaffolds. Nanotechnology 28:24LT01-1–24LT01-6. doi: 10.1088/1361-6528/aa71c5 CrossRefGoogle Scholar
  84. 84.
    Cançado LG, Jorio A, Ferreira EHM, Stavale F, Achete CA, Capaz RB, Moutinho MVO, Lombardo A, Kulmala TS, Ferrari AC (2011) Quantifying defects in graphene via raman spectroscopy at different excitation energies. Nano Lett. 11:3190–3196. doi: 10.1021/nl201432g CrossRefGoogle Scholar
  85. 85.
    Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A (2010) A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrol. 89:143–151. doi: 10.1016/j.jaap.2010.07.006 CrossRefGoogle Scholar
  86. 86.
    Strzemiecka B, Voelkel A, Ziôba-Palus J, Lachowicz T (2014) Assessment of the chemical changes during storage of phenol-formaldehyde resins pyrolysis gas chromatography mass spectrometry, inverse gas chromatography and fourier transform infra red methods. J. Chromatogr. A 1359:255–261. doi: 10.1016/j.chroma.2014.07.045 CrossRefGoogle Scholar
  87. 87.
    Lu X, Li L, Song B, Sik Moon K, Hu N, Liao G, Shi T, Wong C (2015) Mechanistic investigation of the graphene functionalization using p-phenylenediamine and its application for supercapacitors. Nano Energy 17:160–170. doi: 10.1016/j.nanoen.2015.08.011 CrossRefGoogle Scholar
  88. 88.
    Biniak S, Swiatkowski A, Pakula M, Sankowska M, Kusmierek K, Trykowski G (2013) Cyclic voltammetric and FTIR studies of powdered carbon electrodes in the electrosorption of 4-chlorophenols from aqueous electrolytes. Carbon 51:301–312. doi: 10.1016/j.carbon.2012.08.057 CrossRefGoogle Scholar
  89. 89.
    Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49:2581–2602. doi: 10.1016/j.carbon.2011.03.028 CrossRefGoogle Scholar
  90. 90.
    Tsirka K, Foteinidis G, Dimos K, Tzounis L, Gournis D, Paipetis AS (2017) Production of hierarchical all graphitic structures: a systematic study. J. Colloid Interface Sci. 487:444–457. doi: 10.1016/j.jcis.2016.10.075 CrossRefGoogle Scholar
  91. 91.
    Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132:14067–14069. doi: 10.1021/ja1072299 CrossRefGoogle Scholar
  92. 92.
    Allahbakhsh A, Bahramian AR (2015) Self-assembled and pyrolyzed carbon aerogels: an overview of their preparation mechanisms, properties and applications. Nanoscale 7:14139–14158. doi: 10.1039/C5NR03855C CrossRefGoogle Scholar
  93. 93.
    Meshot ER, Zwissler DW, Bui N, Kuykendall TR, Wang C, Hexemer A, Wu KJJ, Fornasiero F (2017) Quantifying the hierarchical order in self-aligned carbon nanotubes from atomic to micrometer scale. ACS Nano 11:5405–5416. doi: 10.1021/acsnano.6b08042 CrossRefGoogle Scholar
  94. 94.
    Yue H, Reguero V, Senokos E, Monreal-Bernal A, Mas B, Fernndez-Blzquez J, Marcilla R, Vilatela J (2017) Fractal carbon nanotube fibers with mesoporous crystalline structure. Carbon 122:47–53. doi: 10.1016/j.carbon.2017.06.032 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Aeronautics and AstronauticsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstUSA
  5. 5.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations