Advertisement

Journal of Materials Science

, Volume 53, Issue 4, pp 2669–2684 | Cite as

Nitrogen-doped porous carbon using ZnCl2 as activating agent for high-performance supercapacitor electrode materials

  • Haijun Chen
  • Huanming Wei
  • Ning Fu
  • Wei Qian
  • Yuping Liu
  • Hualin LinEmail author
  • Sheng HanEmail author
Energy materials

Abstract

A facile method for synthesising porous carbon materials with high nitrogen content is employed in this study using 1H-Benzotriazole (BTA) as carbon precursor and ZnCl2 as active agent at 600–800 °C for 2 h under N2 atmosphere. Pure BTA completely degrades even at low temperature (270 °C) under inert gas, but ZnCl2 can convert the more organics to carbon because of its dehydration. The obtained NC-2-700 sample possesses a high specific surface area (1228 m2·g−1) and a nitrogen content up to 10.27 wt%. Moreover, the N-doped carbon exhibits a good electrochemical property (with a specific capacitance of 332 F·g−1 at the current density of 0.5 A·g−1), as well as an outstanding cycle stability (96.5% of the initial specific capacitance is maintained after 5000 cycles at 1 A·g−1). In addition, this obtained symmetric ultra-capacitor prepared from the NC-2-700 sample exhibits a highest energy density of 12.94 Wh·kg−1 with a power density of 375 W·kg−1 at a current density of 1 A·g−1. And even this NC-2-700//NC-2-700 supercapacitor gives 5.43 Wh·kg−1 with a power density of 3750 W·kg−1 at a high current density of 10 A·g−1. Consequently, these experimental results confirm that the porous carbon materials with high nitrogen content can be a prospective electrode material for supercapacitors.

Notes

Acknowledgements

This study was funded by the Shanghai Leading Academic Discipline Project (Project Number J51503), National Natural Science Foundation of China (Project Number 20976105), Shanghai Association for Science and Technology Achievements Transformation Alliance Program (Project Number LM201559), Shanghai Municipal Education Commission boosting project (Project Number 15cxy39), Science and Technology Commission of Shanghai Municipality Project (Project Number 14520503200), Shanghai Talent Development Funding (Project Number 201335), 2016 laboratory technique project-Chemical engineering simulation training centre (Project Number 3921NH163004007).

Compliance with ethical standards

Conflict of interest

All authors listed have declared that they have no conflict of interest.

Supplementary material

10853_2017_1453_MOESM1_ESM.docx (8.6 mb)
Supplementary material 1 (DOCX 8769 kb)

References

  1. 1.
    Dusastre V, Martiradonna L (2017) Materials for sustainable energy. Nat Mater 16(1):15. doi: 10.1038/nmat4838 CrossRefGoogle Scholar
  2. 2.
    Lin CY, Zhang L, Zhao Z, Xia Z (2017) Design principles for covalent organic frameworks as efficient electrocatalysts in clean energy conversion and green oxidizer production. Adv Mater. doi: 10.1002/adma.201606635 Google Scholar
  3. 3.
    Liu R, Ma L, Huang S, Mei J, Xu J, Yuan G (2017) A flexible polyaniline/graphene/bacterial cellulose supercapacitor electrode. New J Chem 41(2):857–864CrossRefGoogle Scholar
  4. 4.
    Su Z, Yang C, Xie B, Lin Z, Zhang Z, Liu J, Li B, Kang F, Wong CP (2014) Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy Environ Sci 7(8):2652–2659CrossRefGoogle Scholar
  5. 5.
    Barzegar F, Bello A, Momodu D, Madito MJ, Dangbegnon J, Manyala N (2016) Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte. J Power Sour 309:245–253CrossRefGoogle Scholar
  6. 6.
    Xu Z, Wang J, Hu Z, Geng R, Gan L (2017) Structure evolutions and high electrochemical performances of carbon aerogels prepared from the pyrolysis of phenolic resin gels containing ZnCl2. Electrochim Acta 231:601–608CrossRefGoogle Scholar
  7. 7.
    Qie L, Chen W, Xu H, Xiong X, Jiang Y, Zou F, Hu X, Xin Y, Zhang Z, Huang Y (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6(8):2497–2504CrossRefGoogle Scholar
  8. 8.
    Xiong S, Shi Y, Chu J, Gong M, Wu B, Wang X (2014) Preparation of high-performance covalently bonded polyaniline nanorods/graphene supercapacitor electrode materials using interfacial copolymerization approach. Electrochim Acta 127:139–145CrossRefGoogle Scholar
  9. 9.
    Zhang Q, Li Y, Feng Y, Feng W (2013) Electropolymerization of graphene oxide/polyaniline composite for high-performance supercapacitor. Electrochim Acta 90:95–100CrossRefGoogle Scholar
  10. 10.
    Yu X, Park HS (2014) Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon 77:59–65CrossRefGoogle Scholar
  11. 11.
    Gao F, Qu J, Zhao Z, Wang Z, Qiu J (2016) Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochim Acta 190:1134–1141CrossRefGoogle Scholar
  12. 12.
    Niu Z, Dong H, Zhu B, Li J, Hng HH, Zhou W, Chen X, Xie S (2013) Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv Mater 25(7):1058–1064CrossRefGoogle Scholar
  13. 13.
    Kim S-I, Lee J-S, Ahn H-J, Song H-K, Jang J-H (2013) Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl Mater Interfaces 5(5):1596–1603CrossRefGoogle Scholar
  14. 14.
    Jagadale AD, Kumbhar VS, Dhawale DS, Lokhande CD (2013) Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes. Electrochim Acta 98:32–38CrossRefGoogle Scholar
  15. 15.
    Shi Y, Pan L, Liu B, Wang Y, Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2(17):6086CrossRefGoogle Scholar
  16. 16.
    Fan X, Yu C, Yang J, Ling Z, Qiu J (2014) Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors. Carbon 70:130–141CrossRefGoogle Scholar
  17. 17.
    Nasini UB, Bairi VG, Ramasahayam SK, Bourdo SE, Viswanathan T, Shaikh AU (2014) Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application. J Power Sour 250:257–265CrossRefGoogle Scholar
  18. 18.
    Qu Y, Zhang Z, Zhang X, Ren G, Lai Y, Liu Y, Li J (2015) Highly ordered nitrogen-rich mesoporous carbon derived from biomass waste for high-performance lithium–sulfur batteries. Carbon 84:399–408CrossRefGoogle Scholar
  19. 19.
    Zhou M, Pu F, Wang Z, Guan S (2014) Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68:185–194CrossRefGoogle Scholar
  20. 20.
    Yu X, Kang Y, Park HS (2016) Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon 101:49–56CrossRefGoogle Scholar
  21. 21.
    Li M, Xue J (2014) Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J Phys Chem C 118(5):2507–2517CrossRefGoogle Scholar
  22. 22.
    Yun YS, Park MH, Hong SJ, Lee ME, Park YW, Jin HJ (2015) Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors. ACS Appl Mater Interfaces 7(6):3684–3690CrossRefGoogle Scholar
  23. 23.
    Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137(15):4920–4923CrossRefGoogle Scholar
  24. 24.
    Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25(17):2474–2480CrossRefGoogle Scholar
  25. 25.
    Luo W, Wang B, Heron CG, Allen MJ, Morre J, Maier CS, Stickle WF, Ji X (2014) Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation. Nano Lett 14(4):2225–2229CrossRefGoogle Scholar
  26. 26.
    Han J, Xu G, Ding B, Pan J, Dou H, MacFarlane DR (2014) Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. J Mater Chem A 2(15):5352–5357CrossRefGoogle Scholar
  27. 27.
    Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471CrossRefGoogle Scholar
  28. 28.
    Hu Y, Liu H, Ke Q, Wang J (2014) Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. J Mater Chem A 2(30):11753–11758CrossRefGoogle Scholar
  29. 29.
    Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19(3):438–447CrossRefGoogle Scholar
  30. 30.
    Tian W, Zhang H, Duan X, Sun H, Tade MO, Ang HM, Wang S (2016) Nitrogen-and sulfur-codoped hierarchically porous carbon for adsorptive and oxidative removal of pharmaceutical contaminants. ACS Appl Mater Interfaces 8(11):7184–7193CrossRefGoogle Scholar
  31. 31.
    Tan Z, Ni K, Chen G, Zeng W, Tao Z, Ikram M, Zhang Q, Wang H, Sun L, Zhu X, Wu X, Ji H, Ruoff RS, Zhu Y (2017) Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv Mater. doi: 10.1002/adma.201603414 Google Scholar
  32. 32.
    Yun S, Kang SO, Park S, Park HS (2014) CO2-activated, hierarchical trimodal porous graphene frameworks for ultrahigh and ultrafast capacitive behavior. Nanoscale 6(10):5296–5302CrossRefGoogle Scholar
  33. 33.
    Wei JS, Ding H, Wang YG, Xiong HM (2015) Hierarchical porous carbon materials with high capacitance derived from Schiff-base networks. ACS Appl Mater Interfaces 7(10):5811–5819CrossRefGoogle Scholar
  34. 34.
    Jiang J, Bao L, Qiang Y, Xiong Y, Chen J, Guan S, Chen J (2015) Sol–gel process-derived rich nitrogen-doped porous carbon through KOH activation for supercapacitors. Electrochim Acta 158:229–236CrossRefGoogle Scholar
  35. 35.
    Molina-Sabio M, Rodrίguez-Reinoso F (2004) Role of chemical activation in the development of carbon porosity. Colloids Surf A 241(1–3):15–25CrossRefGoogle Scholar
  36. 36.
    Ma Y, Wang Q, Wang X, Sun X, Wang X (2014) A comprehensive study on activated carbon prepared from spent shiitake substrate via pyrolysis with ZnCl2. J Porous Mater 22(1):157–169CrossRefGoogle Scholar
  37. 37.
    Ma X, Liu M, Gan L, Zhao Y, Chen L (2013) Synthesis of micro-and mesoporous carbon spheres for supercapacitor electrode. J Solid State Electrochem 17(8):2293–2301CrossRefGoogle Scholar
  38. 38.
    Sing KSW (1985) Reporting physisorption data for gas, solid systems with special reference to the determination of surface area and porosity (recommendations, 1984). Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  39. 39.
    Wu ZS, Sun Y, Tan YZ, Yang S, Feng X, Mullen K (2012) Three-dimensional graphene-based macro-and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc 134(48):19532–19535CrossRefGoogle Scholar
  40. 40.
    Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7(1):379–386CrossRefGoogle Scholar
  41. 41.
    Zhou J, Li W, Zhang Z, Xing W, Zhuo S (2012) Carbon dioxide adsorption performance of N-doped zeolite Y templated carbons. RSC Adv 2(1):161–167CrossRefGoogle Scholar
  42. 42.
    Yang B, Yu C, Yu Q, Zhang X, Li Z, Lei L (2015) N-doped carbon xerogels as adsorbents for the removal of heavy metal ions from aqueous solution. RSC Adv 5(10):7182–7191CrossRefGoogle Scholar
  43. 43.
    Hueso JL, Espinós JP, Caballero A, Cotrino J, González-Elipe AR (2007) XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas. Carbon 45(1):89–96CrossRefGoogle Scholar
  44. 44.
    Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798CrossRefGoogle Scholar
  45. 45.
    Sun L, Tian C, Fu Y, Yang Y, Yin J, Wang L, Fu H (2014) Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem Eur J 20(2):564–574CrossRefGoogle Scholar
  46. 46.
    Knight DS, White WB (2011) Characterization of diamond films by Raman spectroscopy. J Mater Res 4(02):385–393CrossRefGoogle Scholar
  47. 47.
    Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143(1–2):47–57CrossRefGoogle Scholar
  48. 48.
    Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758CrossRefGoogle Scholar
  49. 49.
    Wei X, Jiang X, Wei J, Gao S (2016) Functional groups and pore size distribution do matter to hierarchically porous carbons as high-rate-performance supercapacitors. Chem Mater 28(2):445–458CrossRefGoogle Scholar
  50. 50.
    Ma G, Zhang Z, Sun K, Peng H, Yang Q, Ran F, Lei Z (2015) White clover based nitrogen-doped porous carbon for a high energy density supercapacitor electrode. RSC Adv 5(130):107707–107715CrossRefGoogle Scholar
  51. 51.
    Wu X, Zhou J, Xing W, Wang G, Cui H, Zhuo S, Xue Q, Yan Z, Qiao SZ (2012) High-rate capacitive performance of graphene aerogel with a superhigh C/O molar ratio. J Mater Chem 22(43):23186–23193CrossRefGoogle Scholar
  52. 52.
    Liu B, Liu Y, Chen H, Yang M, Li H (2017) Oxygen and nitrogen co-doped porous carbon nanosheets derived from Perilla frutescens for high volumetric performance supercapacitors. J Power Sour 341:309–317CrossRefGoogle Scholar
  53. 53.
    Pan Y, Zhao Y, Mu S, Wang Y, Jiang C, Liu Q, Fang Q, Xue M, Qiu S (2017) Cation exchanged MOF-derived nitrogen-doped porous carbons for CO2 capture and supercapacitor electrode materials. J Mater Chem A. doi: 10.1039/c7ta00162b Google Scholar
  54. 54.
    Chen L, Ji T, Mu L, Zhu J (2017) Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111:839–848CrossRefGoogle Scholar
  55. 55.
    Hu Y, Tong X, Zhuo H, Zhong L, Peng X, Wang S, Sun R (2016) 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: an attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv 6(19):15788–15795CrossRefGoogle Scholar
  56. 56.
    Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1(21):6462CrossRefGoogle Scholar
  57. 57.
    Cheng P, Gao S, Zang P, Yang X, Bai Y, Xu H, Liu Z, Lei Z (2015) Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage. Carbon 93:315–324CrossRefGoogle Scholar
  58. 58.
    Zhang J, Zhao XS (2012) On the configuration of supercapacitors for maximizing electrochemical performance. Chemsuschem 5(5):818–841CrossRefGoogle Scholar
  59. 59.
    Yang M, Zhong Y, Bao J, Zhou X, Wei J, Zhou Z (2015) Achieving battery-level energy density by constructing aqueous carbonaceous supercapacitors with hierarchical porous N-rich carbon materials. J Mater Chem A 3(21):11387–11394CrossRefGoogle Scholar
  60. 60.
    Chen C, Xu G, Wei X, Yang L (2016) A macroscopic three-dimensional tetrapod-separated graphene-like oxygenated N-doped carbon nanosheet architecture for use in supercapacitors. J Mater Chem A 4(25):9900–9909CrossRefGoogle Scholar
  61. 61.
    Ling Z, Wang Z, Zhang M, Yu C, Wang G, Dong Y, Liu S, Wang Y, Qiu J (2016) Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26(1):111–119CrossRefGoogle Scholar
  62. 62.
    Liu Y, Zhou J, Chen L, Zhang P, Fu W, Zhao H, Ma Y, Pan X, Zhang Z, Han W, Xie E (2015) Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors. ACS Appl Mater Interfaces 7(42):23515–23520CrossRefGoogle Scholar
  63. 63.
    Zhou J, Zhang Z, Xing W, Yu J, Han G, Si W, Zhuo S (2015) Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance. Electrochim Acta 153:68–75CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghaiPeople’s Republic of China

Personalised recommendations