Journal of Materials Science

, Volume 52, Issue 23, pp 13378–13389 | Cite as

Hydrochar as protein support: preservation of biomolecule properties with non-covalent immobilization

  • Manuela Oliveira Castro
  • Mayara Queiroz de Santiago
  • Kyria Santiago Nascimento
  • Benildo Sousa Cavada
  • Emilio de Castro Miguel
  • Amauri Jardim de Paula
  • Odair Pastor FerreiraEmail author


In this work, the ConBr lectin was non-covalently immobilized onto hydrochar (HC). This carbonaceous material was produced by the hydrothermal carbonization of glucose and then put to interact with the lectin, aiming to immobilize the biomolecule via electrostatic interactions. Samples obtained after the interaction were characterized by CHNS elemental analysis, scanning electron microscopy and Fourier transform infrared spectroscopy (FTIR). FTIR results from the conjugated sample identified the presence of NH2 + and NH3 + groups of the protein and COO groups of the HC, indicating the occurrence of electrostatic interaction between the biomolecule and the support. Furthermore, the immobilization experiment was also performed using ConBr lectin marked with fluorescein isothiocyanate to assess the immobilization on the hydrochar using fluorescence emission analysis. Hemagglutination tests revealed that even after the conjugation with the HC, the agglutinating property of lectin toward erythrocytes (red blood cells) was preserved. Finally, our results indicate that non-covalent interactions represent an efficient mechanism for protein immobilization on the HC while maintaining the protein structure and its biological activity.



The authors acknowledge Francisco Holanda Soares Júnior for the SEM images and Antonio Gomes de Souza Filho for the precious discussions. Also, the authors are grateful to Central Analítida-UFC/CT-INFRA/MCTI-SISNANO/Pró-Equipamentos CAPES for providing the electron scanning microscopes and confocal fluorescence microscope and CETENE for the TEM measurements. This work was supported by CNPq (Grant 478743/2013-0), FUNCAP (PRONEX PR2-0101-00006.01.00/15) and CAPES (for the scholarship awarded to M. O. Castro).

Supplementary material

10853_2017_1441_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (PDF 2253 kb)


  1. 1.
    Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235. doi: 10.1039/C3CS60075K CrossRefGoogle Scholar
  2. 2.
    Benešová E, Králová B (2012) Affinity interactions as a tool for protein immobilization. In: Magdeldin S (ed) Affinity chromatography. InTech, Rijeka, pp 29–46Google Scholar
  3. 3.
    Calvaresi M, Zerbetto F (2013) The devil and holy water: protein and carbon nanotube hybrids. Acc Chem Res 46:2454–2463. doi: 10.1021/ar300347d CrossRefGoogle Scholar
  4. 4.
    Singh S, Vardharajula S, Tiwari P et al (2012) Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine 7:5361–5374. doi: 10.2147/IJN.S35832 CrossRefGoogle Scholar
  5. 5.
    Elnashar MM (2010) Immobilized molecules using biomaterials and nanobiotechnology. J Biomater Nanobiotechnol 1:61–77. doi: 10.4236/jbnb.2010.11008 CrossRefGoogle Scholar
  6. 6.
    Bhakta SA, Evans E, Benavidez TE, Garcia CD (2015) Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 872:7–25. doi: 10.1016/j.aca.2014.10.031 CrossRefGoogle Scholar
  7. 7.
    Kaushik M, Sinha P, Jaiswal P et al (2016) Protein engineering and de novo designing of a biocatalyst. J Mol Recognit 29:499–503. doi: 10.1002/jmr.2546 CrossRefGoogle Scholar
  8. 8.
    Eş I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99:2065–2082. doi: 10.1007/s00253-015-6390-y CrossRefGoogle Scholar
  9. 9.
    Hernandez K, Fernandez-Lafuente R (2011) Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol 48:107–122. doi: 10.1016/j.enzmictec.2010.10.003 CrossRefGoogle Scholar
  10. 10.
    Bilal M, Iqbal HMN, Hussain Shah SZ et al (2016) Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. J Environ Manag 183:836–842. doi: 10.1016/j.jenvman.2016.09.040 CrossRefGoogle Scholar
  11. 11.
    Ensuncho L, Alvarez-Cuenca M, Legge RL (2005) Removal of aqueous phenol using immobilized enzymes in a bench scale and pilot scale three-phase fluidized bed reactor. Bioprocess Biosyst Eng 27:185–191. doi: 10.1007/s00449-005-0400-x CrossRefGoogle Scholar
  12. 12.
    De Schutter K, Van Damme E (2015) Protein–carbohydrate interactions as part of plant defense and animal immunity. Molecules 20:9029–9053. doi: 10.3390/molecules20059029 CrossRefGoogle Scholar
  13. 13.
    De Vasconcelos MA, Cunha CO, Sousa Arruda FV et al (2012) Lectin from Canavalia brasiliensis seeds (ConBr) is a valuable biotechnological tool to stimulate the growth of Rhizobium tropici in vitro. Molecules 17:5244–5254. doi: 10.3390/molecules17055244 CrossRefGoogle Scholar
  14. 14.
    Cavada BS, Barbosa T, Arruda S et al (2001) Revisiting proteus: do minor changes in lectin structure matter in biological activity? Lessons from and potential biotechnological uses of the Diocleinae subtribe lectins. Curr Protein Pept Sci 2:123–135. doi: 10.2174/1389203013381152 CrossRefGoogle Scholar
  15. 15.
    Bento CAM, Cavada BS, Oliveira JTA et al (1993) Rat paw edema and leukocyte immigration induced by plant lectins. Agents Actions 38:48–54. doi: 10.1007/BF02027213 CrossRefGoogle Scholar
  16. 16.
    Barral-Netto M, Santos SB, Barral A et al (1992) Human lymphocyte stimulation by legume lectins from the diocleae tribe. Immunol Invest 21:297–303. doi: 10.3109/08820139209069369 CrossRefGoogle Scholar
  17. 17.
    Barauna S, Kaster M, Heckert B et al (2006) Antidepressant-like effect of lectin from Canavalia brasiliensis (ConBr) administered centrally in mice. Pharmacol Biochem Behav 85:160–169. doi: 10.1016/j.pbb.2006.07.030 CrossRefGoogle Scholar
  18. 18.
    Jacques AV, Rieger DK, Maestri M et al (2013) Lectin from Canavalia brasiliensis (ConBr) protects hippocampal slices against glutamate neurotoxicity in a manner dependent of PI3K/Akt pathway. Neurochem Int 62:836–842. doi: 10.1016/j.neuint.2013.02.020 CrossRefGoogle Scholar
  19. 19.
    Silva FO, Santos PN, Figueirôa EO et al (2014) Antiproliferative effect of Canavalia brasiliensis lectin on B16F10 cells. Res Vet Sci 96:276–282. doi: 10.1016/j.rvsc.2014.01.005 CrossRefGoogle Scholar
  20. 20.
    Nagaraju K, Reddy R, Reddy N (2015) A review on protein functionalized carbon nanotubes. J Appl Biomater Funct Mater 13:e301–e312. doi: 10.5301/jabfm.5000231 Google Scholar
  21. 21.
    Yang Y, Asiri AM, Tang Z et al (2013) Graphene based materials for biomedical applications. Mater Today 16:365–373. doi: 10.1016/j.mattod.2013.09.004 CrossRefGoogle Scholar
  22. 22.
    Wang J, Qiu J (2016) A review of carbon dots in biological applications. J Mater Sci 51:4728–4738. doi: 10.1007/s10853-016-9797-7 CrossRefGoogle Scholar
  23. 23.
    Falco C, Perez Caballero F, Babonneau F et al (2011) Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13 C solid state NMR. Langmuir 27:14460–14471. doi: 10.1021/la202361p CrossRefGoogle Scholar
  24. 24.
    Yu L, Falco C, Weber J et al (2012) Carbohydrate-derived hydrothermal carbons: a thorough characterization study. Langmuir 28:12373–12383. doi: 10.1021/la3024277 CrossRefGoogle Scholar
  25. 25.
    Hu B, Wang K, Wu L et al (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828. doi: 10.1002/adma.200902812 CrossRefGoogle Scholar
  26. 26.
    Titirici M-M, White RJ, Falco C, Sevilla M (2012) Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ Sci 5:6796–6822. doi: 10.1039/c2ee21166a CrossRefGoogle Scholar
  27. 27.
    Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem A Eur J 15:4195–4203. doi: 10.1002/chem.200802097 CrossRefGoogle Scholar
  28. 28.
    Titirici M-M, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem 10:1204–1212. doi: 10.1039/b807009a CrossRefGoogle Scholar
  29. 29.
    Moreira RA, Cavada BS (1984) Lectin from Canavalia brasiliensis (MART.). Isolation, characterization and behavior during germination. Biol Plant 26:113–120CrossRefGoogle Scholar
  30. 30.
    Cavada BS, Santos CF, Grangeiro TB et al (1998) Purification and characterization of a lectin from seeds of Vatairea macrocarpa Duke. Phytochemistry 49:675–680. doi: 10.1016/S0031-9422(98)00144-7 CrossRefGoogle Scholar
  31. 31.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  32. 32.
    Ainouz IL, Sampaio AH, Benevides NMB et al (1992) Agglutination of enzyme treated erythrocytes by Brazilian marine algal extracts. Bot Mar 35:475–479. doi: 10.1515/botm.1992.35.6.475 Google Scholar
  33. 33.
    Wang H, Ma L, Cao K et al (2012) Selective solid-phase extraction of uranium by salicylideneimine-functionalized hydrothermal carbon. J Hazard Mater 229–230:321–330. doi: 10.1016/j.jhazmat.2012.06.004 CrossRefGoogle Scholar
  34. 34.
    Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy: a guide for students of organic chemistry, 3rd edn. Thomson Learning Inc, StamfordGoogle Scholar
  35. 35.
    Patnaik P (2004) Dean’s analytical chemistry book, 2nd edn. McGRAW-HILL, New YorkGoogle Scholar
  36. 36.
    Silverstein RM, Webster FX, Kiemle DJ (2006) Identificação Espectrométrica de Compostos Orgânicos, 7th edn. LTC, Rio de JaneiroGoogle Scholar
  37. 37.
    Geng W, Nakajima T, Takanashi H, Ohki A (2009) Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry. Fuel 88:139–144. doi: 10.1016/j.fuel.2008.07.027 CrossRefGoogle Scholar
  38. 38.
    Nascimento KS, Rosa PAJ, Nascimento KS et al (2010) Partitioning and recovery of Canavalia brasiliensis lectin by aqueous two-phase systems using design of experiments methodology. Sep Purif Technol 75:48–54. doi: 10.1016/j.seppur.2010.07.008 CrossRefGoogle Scholar
  39. 39.
    Portal, ExPASy—Bioinformatics Resource (ProtParam Tool). Accessed 8 Sep 2016
  40. 40.
    Grangeiro TB, Schriefer A, Calvete JJ et al (1997) Molecular cloning and characterization of ConBr, the lectin of Canavalia brasiliensis seeds. Eur J Biochem 248:43–48. doi: 10.1111/j.1432-1033.1997.00043.x CrossRefGoogle Scholar
  41. 41.
    Huet M, Claverie JM (1978) Sedimentation studies of the reversible dimer–tetramer transition kinetics of concanavalin A. Biochemistry 17:236–241. doi: 10.1021/bi00595a007 CrossRefGoogle Scholar
  42. 42.
    Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta Bioenergy 1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004 CrossRefGoogle Scholar
  43. 43.
    Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin (Shanghai) 39:549–559. doi: 10.1111/j.1745-7270.2007.00320.x CrossRefGoogle Scholar
  44. 44.
    Nogueira KAB, Cecilia JA, Santos SO et al (2016) Adsorption behavior of bovine serum albumin on ZnAl and Mg–Al layered double hydroxides. J Sol-Gel Sci Technol 80:748–758. doi: 10.1007/s10971-016-4166-1 CrossRefGoogle Scholar
  45. 45.
    Alarcon EI, Bueno-Alejo CJ, Noel CW et al (2013) Human serum albumin as protecting agent of silver nanoparticles: role of the protein conformation and amine groups in the nanoparticle stabilization. J Nanoparticle Res. doi: 10.1007/s11051-012-1374-7 Google Scholar
  46. 46.
    Puddu V, Perry CC (2012) Peptide adsorption on silica nanoparticles: evidence of hydrophobic interactions. ACS Nano 6:6356–6363. doi: 10.1021/nn301866q CrossRefGoogle Scholar
  47. 47.
    Mu Q, Jiang G, Chen L et al (2014) Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev 114:7740–7781. doi: 10.1021/cr400295a CrossRefGoogle Scholar
  48. 48.
    Li R, Wang L, Shahbazi A (2015) A review of hydrothermal carbonization of carbohydrates for carbon spheres preparation. Trends Renew Energy 1:43–56. doi: 10.17737/tre.2015.1.1.009 CrossRefGoogle Scholar
  49. 49.
    Qi Y, Zhang M, Qi L, Qi Y (2016) Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization. RSC Adv 6:20814–20823. doi: 10.1039/C5RA26725K CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratório de Materiais Funcionais Avançados (LaMFA), Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  2. 2.Laboratório de Moléculas Biologicamente Ativas (BioMol - Lab), Departamento de Bioquímica e Biologia MolecularUniversidade Federal do CearáFortalezaBrazil
  3. 3.Central Analítica, Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  4. 4.Solid-Biological Interface Group (SolBIN), Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations