High-performance flexible supercapacitors based on C/Na2Ti5O11 nanocomposite electrode materials

  • 347 Accesses

  • 5 Citations


A new solution method to synthesize Na2Ti5O11 with titanium powder is presented, and the C/Na2Ti5O11 nanocomposite with high specific surface area and tunnel structure as the electrode material has excellent electrochemical performance. The single electrode composed of the C/Na2Ti5O11 nanocomposite based on carbon fiber fabric (CFF) has the highest area capacitance of 1066 mF cm−2 at a current density of 2 mA cm−2, which is superior to other titanates and Na-ion materials for supercapacitors (SCs). By scan-rate dependence cyclic voltammetry analysis, the capacity value shows both capacitive and faradaic intercalation processes, and the intercalation process contributed 81.7% of the total charge storage at the scan rate of 5 mV s−1. The flexible symmetric solid-state SCs (C/Na2Ti5O11/CFF//C/Na2Ti5O11/CFF) based on different C/Na2Ti5O11 mass were fabricated, and 7 mg SCs show the best supercapacitive characteristics with an area capacitance of 309 mF cm−2 and a specific capacitance of 441 F g−1, it has a maximum energy density of 22 Wh kg−1 and power density of 1286 W kg−1. As for practical application, three SCs in series can power 100 green light-emitting diodes (LEDs) to light up for 18 min, which is much longer than our previous work by Wang et al. lighting 100 LEDs for 8 min. Thus, the C/Na2Ti5O11 nanocomposite has promising potential application in energy storage devices.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1

    Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414(6861):332–337

  2. 2

    Miller JR, Simon P (2008) Materials science: electrochemical capacitors for energy management. Science 321(5889):651–652

  3. 3

    Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26(28):4763–4782

  4. 4

    Yang P, Mai W (2014) Flexible solid-state electrochemical supercapacitors. Nano Energy 8:274–290

  5. 5

    Zhang Y, Huang Y, Rogers JA (2015) Mechanics of stretchable batteries and supercapacitors. Curr Opin Solid State Mater Sci 19(3):190–199

  6. 6

    Harris KD, Elias AL, Chung HJ (2015) Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci 51(6):2771–2805. doi:10.1007/s10853-015-9643-3

  7. 7

    Qin G, Zhang H, Liao H, Li Z, Tian J, Lin Y, Zhang D, Wu Q (2017) Novel graphene nanosheet-wrapped polyaniline rectangular-like nanotubes for flexible all-solid-state supercapacitors. J Mater Sci. doi:10.1007/s10853-017-1273-5

  8. 8

    Zhao J, Li X, Li X, Cai Z, Ge F (2017) A flexible carbon electrode based on traditional cotton woven fabrics with excellent capacitance. J Mater Sci 52(16):9773–9779. doi:10.1007/s10853-017-1161-z

  9. 9

    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

  10. 10

    Wang J, Zhang X, Wei Q, Lv H, Tian Y, Tong Z, Liu X, Hao J, Qu H, Zhao J, Li Y, Mai L (2016) 3D self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors. Nano Energy 19:222–233

  11. 11

    Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26(28):4763–4782

  12. 12

    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62

  13. 13

    Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3(9):1294

  14. 14

    Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11(7):2905–2911

  15. 15

    Kakvand P, Rahmanifar MS, El-Kady MF, Pendashteh A, Kiani MA, Hashami M, Najafi M, Abbasi A, Mousavi MF, Kaner RB (2016) Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors. Nanotechnology 27(31):12

  16. 16

    Yang Q, Zhang XT, Zhang MY, Gao Y, Gao H, Liu XC, Liu H, Wong KW, Lau WM (2014) Rationally designed hierarchical MnO2-shell/ZnO-nanowire/carbon-fabric for high-performance supercapacitor electrodes. J Power Sources 272:654–660

  17. 17

    Lin Z, Zhu W, Wang Z, Yang Y, Lin Y, Huang Z (2016) Synthesis of carbon-coated Li4Ti5O12 nanosheets as anode materials for high-performance lithium-ion batteries. J Alloy Compd 687:232–239

  18. 18

    Xiao X, Peng Z, Chen C, Zhang C, Beidaghi M, Yang Z, Wu N, Huang Y, Miao L, Gogotsi Y, Zhou J (2014) Freestanding MoO3−x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 9:355–363

  19. 19

    Andersson S, Wadsley AD (1960) Five co-ordinated titanium in K2TI2O5. Nature 187(4736):499–500

  20. 20

    El-Naggar IM, Mowafy EA, Ali IM, Aly HF (2002) Synthesis and sorption behaviour of some radioactive nuclides on sodium titanate as cation exchanger. Adsorpt-J Int Adsorpt Soc 8(3):225–234

  21. 21

    Pal D, Abdi SH, Shukla M (2015) Structural and EPR studies of lithium inserted layered potassium tetra titanate K2Ti4O9 as material for K ions battery. J Mater Sci: Mater Electron 26(9):6647–6652

  22. 22

    Pal D, Pal RK, Pandey JL, Abdi SH, Agnihotri AK (2010) Bulk ac conductivity studies of lithium substituted layered sodium trititanates (Na2Ti3O7). J Mater Sci: Mater Electron 21(11):1181–1185

  23. 23

    Badhwar S, Maurya D, Kumar J (2005) Dielectric and ac conductivity studies in pure and manganese doped layered K2Ti4O9 ceramics. J Mater Sci-Mater Electron 16(8):495–500

  24. 24

    Inoue Y, Niiyama T, Sato K (1994) Photocatalysts using hexa- and octa-titanates with different tunnel space for water decomposition. Top Catal 1(1–2):137–144

  25. 25

    Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5(12):987–994

  26. 26

    Zhou H, Li D, Hibino M, Honma I (2005) A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. Angew Chem 44(5):797–802

  27. 27

    Dai S, Xu W, Xi Y, Wang M, Gu X, Guo D, Hu C (2016) Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor. Nano Energy 19:363–372

  28. 28

    Dai S, Xi Y, Hu C, Yue X, Cheng L, Wang G (2014) Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors. J Power Sources 263:175–180

  29. 29

    Wang C, Xi Y, Wang M, Zhang C, Wang X, Yang Q, Li W, Hu C, Zhang D (2016) Carbon-modified Na2Ti3O7·2H2O nanobelts as redox active materials for high-performance supercapacitor. Nano Energy 28:115–123

  30. 30

    Hou Y, Tang H, Li B, Chang K, Chang Z, Yuan X-Z, Wang H (2016) Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors. Mater Chem Phys 171:137–144

  31. 31

    Aziz RA, Misnon II, Chong KF, Yusoff MM, Jose R (2013) Layered sodium titanate nanostructures as a new electrode for high energy density supercapacitors. Electrochim Acta 113:141–148

  32. 32

    Kado Y, Soneda Y (2016) MgO-templated carbon as a negative electrode material for Na-ion capacitors. J Phys Chem Solids 99:167–172

  33. 33

    Kim H-K, Lee S-H (2016) Enhanced electrochemical performances of cylindrical hybrid supercapacitors using activated carbon/Li4−xMxTi5−yNyO12 (M = Na, N = V, Mn) electrodes. Energy 109:506–511

  34. 34

    Lee JH, Kim H-K, Baek E, Pecht M, Lee S-H, Lee Y-H (2016) Improved performance of cylindrical hybrid supercapacitor using activated carbon/niobium doped hydrogen titanate. J Power Sources 301:348–354

  35. 35

    Zhou W, Liu X, Sang Y, Zhao Z, Zhou K, Liu H, Chen S (2014) Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange. ACS Appl Mater Interfaces 6(6):4578–4586

  36. 36

    Lee K, Yoo D (2015) Large-area sodium titanate nanorods formed on titanium surface via NaOH alkali treatment. Arch Metall Mater 60(2):1371–1374

  37. 37

    Ho WF, Lai CH, Hsu HC, Wu SC (2010) Surface modification of a Ti−7.5 Mo alloy using NaOH treatment and Bioglass coating. J Mater Sci Mater Med 21(5):1479–1488

  38. 38

    Dai S, Xi Y, Hu C, Yue X, Cheng L, Wang G (2015) MnO2@KCu7S4 NWs hybrid compositions for high-power all-solid-state supercapacitor. J Power Sources 274:477–482

  39. 39

    Wang J, Dou W, Zhang X, Han W, Mu X, Zhang Y, Zhao X, Chen Y, Yang Z, Su Q, Xie E, Lan W, Wang X (2017) Embedded Ag quantum dots into interconnected Co3O4 nanosheets grown on 3D graphene networks for high stable and flexible supercapacitors. Electrochim Acta 224:260–268

  40. 40

    Shaheen W, Warsi MF, Shahid M, Khan MA, Asghar M, Ali Z, Sarfraz M, Anwar H, Nadeem M, Shakir I (2016) Carbon coated MoO3 nanowires/graphene oxide ternary nanocomposite for high-performance supercapacitors. Electrochim Acta 219:330–338

  41. 41

    Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111(40):14925–14931

  42. 42

    Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukla AK (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133(40):16291–16299

  43. 43

    Yin HH, Song CQ, Wang Y, Li SC, Zeng M, Zhang ZL, Zhu ZQ, Yu K (2013) Influence of morphologies and pseudocapacitive contributions for charge storage in V2O5 micro/nano-structures. Electrochim Acta 111:762–770

  44. 44

    Wang K, Xu M, Gu Y, Gu Z, Fan QH (2016) Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes. J Power Sources 332:180–186

  45. 45

    Kim J-H, Lee S-H (2016) Use of carbon and AlPO4 dual coating on H2Ti12O25 anode for high stability hybrid supercapacitor. J Power Sources 331:1–9

  46. 46

    Liu M-C, Kang L, Kong L-B, Lu C, Ma X-J, Li X-M, Luo Y-C (2013) Facile synthesis of NiMoO4·xH2O nanorods as a positive electrode material for supercapacitors. RSC Adv 3(18):6472

  47. 47

    Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y (2016) Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater 28(7):1517–1522

Download references


This work is supported by the NSFCQ (cstc2014jcyjA50030), the graduate scientific research and innovation foundation of Chongqing, China (Grant NO. CYS16016), NSFC (51572040, 51402112), the Development Program (“863” Program) of China (2015AA034801), the Fundamental Research Funds for the Central Universities (No. CDJZR12225501, CQDXWL-2014-001 and CQDXWL-2013-012), the large-scale equipment sharing fund of Chongqing University and the Chongqing University Postgraduates’ Innovation Project (No. CYS15016).

Author information

Correspondence to Yi Xi.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xi, Y., Wang, C. et al. High-performance flexible supercapacitors based on C/Na2Ti5O11 nanocomposite electrode materials. J Mater Sci 52, 13897–13908 (2017).

Download citation