Journal of Materials Science

, Volume 52, Issue 19, pp 11337–11345 | Cite as

Giant strain response in 2 mol% Nb-doped (Bi0.5Na0.4K0.1)TiO3 lead-free ceramics

  • Cheng Wang
  • Tiandong Xia
  • Xiaojie Lou
  • Shutao Tian


A series of Nb-doped (Bi0.5Na0.4K0.1)TiO3 lead-free piezoelectric ceramics were fabricated by a conventional solid-state reaction method. The X-ray diffraction patterns reveal a pure perovskite structure for all the samples. A giant strain of 0.34% is achieved at 2 mol% Nb-doping concentration, and the corresponding normalized strain \(d_{33}^*\) reaches 625 pm V−1, which is one of the best results of the BNT-based ceramics. Complex ac impedance data indicate that only the bulk effect contributes to the resistivity. The compositionally induced disruption of long-range ferroelectric order and relaxor transition contributed to the pinched polarization loops as well as the large electric field-induced strain. The results indicate that appropriate Nb-dopant content can remarkably enhance the strain level of (Bi0.5Na0.4K0.1)TiO3 ceramics, making it a promising candidate for actuator applications.



This work was supported by National Science Foundation of China (NSFC Nos. 51372195) and the CSS Project (Grant No. YK2015-0602006). X. J. Lou would like to thank the “One Thousand Youth Talents” program for support.

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflicts of interest.


  1. 1.
    Li F, Liu Y, Lyu Y, Qi Y, Yu Z, Lu C (2017) Huge strain and energy storage density of A-site La3+ donor doped (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics. Ceram Int 43:106–110CrossRefGoogle Scholar
  2. 2.
    Liu X, Tan X (2016) Giant strains in non-textured (Bi1/2 Na1/2)TiO3–based lead-free ceramics. Adv Mater 28:574–578CrossRefGoogle Scholar
  3. 3.
    Guo H, Liu Rödel J, Tan X (2015) Nanofragmentation of Ferroelectric Domains During Polarization Fatigue. Adv Funct Mater 25:270–277CrossRefGoogle Scholar
  4. 4.
    Jo W, Daniels JE, Jones JL, Tan X, Thomas PA, Damjanovic D, Jr Rödel (2011) Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoceramics. J Appl Phys 109:014110CrossRefGoogle Scholar
  5. 5.
    Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications—status and perspective. J Electroceram 29:71–93CrossRefGoogle Scholar
  6. 6.
    Chen J, Wang Y, Zhang Y, Yang Y, Jin R (2017) Giant electric field-induced strain at room temperature in LiNbO3–doped 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3. J Eur Ceram Soc 37:2365–2371CrossRefGoogle Scholar
  7. 7.
    Panda PK (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44:5049–5062. doi: 10.1007/s10853-009-3643-0 CrossRefGoogle Scholar
  8. 8.
    Zeb A, Milne SJ (2015) High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites. J Mater Sci: Mater Electron 26:9243–9255. doi: 10.1007/s10854-015-3707-7 Google Scholar
  9. 9.
    Li T, Lou X, Ke X et al (2017) Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3–based lead-free piezoceramics. Acta Mater 128:337–344CrossRefGoogle Scholar
  10. 10.
    Maqbool A, Hussain A, Rahman JU, Song TK, Kim W-J, Lee J, Kim M-H (2014) Enhanced electric field-induced strain and ferroelectric behavior of (Bi0.5Na0.5)TiO3–BaTiO3–SrZrO3 lead-free ceramics. Ceram Int 40:11905–11914CrossRefGoogle Scholar
  11. 11.
    Izumi M, Yamamoto K, Suzuki M, Noguchi Y, Miyayama M (2008) Large electric-field-induced strain in Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 solid solution single crystals. Appl Phys Lett 93:242903CrossRefGoogle Scholar
  12. 12.
    Jarupoom P, Patterson E, Gibbons B, Rujijanagul G, Yimnirun R, Cann D (2011) Lead-free ternary perovskite compounds with large electromechanical strains. Appl Phys Lett 99:52901CrossRefGoogle Scholar
  13. 13.
    Chen N, Yao W, Liang C, Xiao S, Hao J, Xu Z, Chu R (2016) Phase structure, ferroelectric properties, and electric field-induced large strain in lead-free 0.99[(1 − x)(Bi0.5Na0.5)TiO3x(Bi0.5K0.5)TiO3]–0.01Ta piezoelectric ceramics. Ceram Int 42:9660–9666CrossRefGoogle Scholar
  14. 14.
    Li Q, Gao S, Ning L, Fan H, Liu Z, Li Z (2017) Giant field-induced strain in Nb2O5-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Ceram Int 43:5367–5373CrossRefGoogle Scholar
  15. 15.
    Roberts AD, Lee J-SM, Wong SY, Li X, Zhang H (2017) Nitrogen-rich activated carbon monoliths via ice-templating with high CO2 and H2 adsorption capacities. J Mater Chem A 5:2811–2820CrossRefGoogle Scholar
  16. 16.
    Hao J, Xu Z, Chu R, Li W, Fu P, Du J, Li G (2016) Structure evolution and electrostrictive properties in (Bi0.5Na0.5)0.94Ba0.06TiO3–M2O5 (M=Nb, Ta, Sb) lead-free piezoceramics. J Eur Ceram Soc 36:4003–4014CrossRefGoogle Scholar
  17. 17.
    Pham K-N, Hussain A, Ahn CW, Kim W, Jeong SJ, Lee J-S (2010) Giant strain in Nb-doped Bi0.5(Na0.82K0.18)0.5TiO3 lead-free electromechanical ceramics. Mater Lett 64:2219–2222CrossRefGoogle Scholar
  18. 18.
    Pu Y, Yao M, Liu H, Frömling T (2016) Phase transition behavior, dielectric and ferroelectric properties of (1 − x)(Bi0.5Na0.5)TiO3xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. J Eur Ceram Soc 36:2461–2468CrossRefGoogle Scholar
  19. 19.
    Lidjici H, Lagoun B, Berrahal M, Rguitti M, Hentatti MA, Khemakhem H (2015) XRD, Raman and electrical studies on the (1 − x)(Na0.5Bi0.5)TiO3xBaTiO3 lead free ceramics. J Alloys Compd 618:643–648CrossRefGoogle Scholar
  20. 20.
    Hao J, Xu Z, Chu R, Li W, Fu P, Du J (2016) Field-induced large strain in lead-free (Bi0.5Na0.5)1 − xBaxTi0.98 (Fe0.5Ta0.5)0.02O3 piezoelectric ceramics. J Alloys Compd 677:96–104CrossRefGoogle Scholar
  21. 21.
    Qiao X-S, Chen X-M, Lian H-L, Chen W-T, Zhou J-P, Liu P, Zhang S (2016) Structure and electrical properties of nonstoichiometric 0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 lead-free ceramics. J Am Ceram Soc 99:198–205CrossRefGoogle Scholar
  22. 22.
    Shi J, Fan H, Liu X, Bell AJ, Roedel J (2014) Large electrostrictive strain in (Bi0.5Na0.5)TiO3–BaTiO3–(Sr0.7Bi0.2)TiO3 solid solutions. J Am Ceram Soc 97:848–853CrossRefGoogle Scholar
  23. 23.
    Dong G, Fan H, Shi J, Li M, Jo W (2015) Composition- and temperature-dependent large strain in (1 − x)(0.8Bi0.5Na0.5TiO3–0.2Bi0.5K0.5TiO3)–xNaNbO3 ceramics. J Am Ceram Soc 98:1150–1155CrossRefGoogle Scholar
  24. 24.
    Liu X, Tan X (2016) Giant strain with low cycling degradation in Ta-doped [Bi1/2(Na0.8K0.2)1/2]TiO3 lead-free ceramics. J Appl Phys 120:034102CrossRefGoogle Scholar
  25. 25.
    Zhao W, Zuo R, Zheng D, Li L, Zhang S (2014) Dielectric relaxor evolution and frequency-insensitive giant strains in (Bi0.5Na0.5)TiO3-modified Bi(Mg0.5Ti0.5)O3–PbTiO3 ferroelectric ceramics. J Am Ceram Soc 97:1855–1860CrossRefGoogle Scholar
  26. 26.
    Wang F, Xu M, Tang Y, Wang T, Shi W, Leung CM, Roedel J (2012) Large strain response in the ternary Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 solid solutions. J Am Ceram Soc 95:1955–1959CrossRefGoogle Scholar
  27. 27.
    Liu L, Shi D, Knapp M, Ehrenberg H, Fang L, Chen J (2014) Large strain response based on relaxor-antiferroelectric coherence in Bi0.5Na0.5TiO3–SrTiO3–(K0.5Na0.5)NbO3 solid solutions. J Appl Phys 116:184104CrossRefGoogle Scholar
  28. 28.
    Ullah A, Ullah A, Iqbal MJ, Khalid MN, Ali A, Zeb A, Khan T, Kim IW (2017) Dielectric and piezoelectric properties of 0.99Bi0.5(Na0.82K0.18)0.5Ti(1 − x)NbxO3–0.01NaSbO3 ceramics. J Mater Sci: Mater Electron 28:8379–8404Google Scholar
  29. 29.
    Li P, Liu B, Shen B, Zhai J, Li L, Zeng H (2017) Large strain response in Bi4Ti3O12 modified BNT-BT piezoelectric ceramics. Ceram Int 43:1008–1013CrossRefGoogle Scholar
  30. 30.
    Bai W, Chen D, Huang Y et al (2016) Temperature-insensitive large strain response with a low hysteresis behavior in BNT-based ceramics. Ceram Int 42:7669–7680CrossRefGoogle Scholar
  31. 31.
    Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D (2009) Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics. J Appl Phys 105:094102CrossRefGoogle Scholar
  32. 32.
    Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe H-J, Bell AJ, Jr Rödel (2011) On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol% BaTiO3. J Appl Phys 110:074106CrossRefGoogle Scholar
  33. 33.
    Liu L, Yang Z, Wu M, Fang L, Hu C (2010) Dielectric properties of (NaBi(1 − x)Kx)0.5Ti(1 − x)NbxO3 ceramics fabricated by mechanical alloying. J Alloys Compd 507:196–200CrossRefGoogle Scholar
  34. 34.
    Cen Z, Zhou C, Ye X, Zhao Y, Gan F, Zhang H (2014) Effect of sintering temperature on structure and dielectric behavior of 0.95(Bi0.5Na0.5)0.97(Li0.5Nd0.5)0.03TiO3–0.05BaTiO3 ceramics. J Mater Sci: Mater Electron 25:4983–4991Google Scholar
  35. 35.
    Zhao Y, Xu J, Zhou C, Yuan C, Li Q, Chen G, Wang H, Yang L (2016) High energy storage properties and dielectric behavior of (Bi0.5Na0.5)0.94Ba0.06Ti1 − x(Al0.5Nb0.5)xO3 lead-free ferroelectric ceramics. Ceram Int 42:2221–2226CrossRefGoogle Scholar
  36. 36.
    Sinclair DC, West AR (1989) Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys 66:3850CrossRefGoogle Scholar
  37. 37.
    Sumi S, Rao PP, Deepa M, Koshy P (2010) Electrical conductivity and impedance spectroscopy studies of cerium based aeschynite type semiconducting oxides: CeTiMO6 (M=Nb or Ta). J Appl Phys 108:063718CrossRefGoogle Scholar
  38. 38.
    Xu Q, Lanagan MT, Huang X, Xie J, Zhang L, Hao H, Liu H (2016) Dielectric behavior and impedance spectroscopy in lead-free BNT–BT–NBN perovskite ceramics for energy storage. Ceram Int 42:9728–9736CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhouPeople’s Republic of China
  2. 2.Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  3. 3.Gansu Construction Vocational Technical CollegeLanzhouPeople’s Republic of China

Personalised recommendations