Advertisement

Journal of Materials Science

, Volume 52, Issue 20, pp 12031–12043 | Cite as

Optimization of solvent-free mechanochemical synthesis of Co/Al2O3 catalysts using low- and high-energy processes

  • Mengnan Lu
  • Nouria Fatah
  • Andrei Y. Khodakov
Mechanochemical Synthesis

Abstract

In this work, alumina-supported cobalt (Co/Al2O3) catalysts were prepared using new solvent-free mechanochemical synthesis methods: low-energy vibratory ball milling (Fritsch, Pulverisette 0) and high-energy planetary ball milling (Retsch, PM 100). γ-Al2O3 supports and Co/Al2O3 catalysts after mechanochemical treatments were characterized using a combination of techniques. The study of solid particles revealed the abrasion and fragmentation phenomena of porous γ-Al2O3 particles and pore filling under milling. Functional cobalt particles introduced by the mechanochemical synthesis were observed to be preferentially localized on the outer surface of the alumina supports. High Fischer–Tropsch reaction rates were obtained with the catalysts prepared by optimized mechanochemical synthesis conditions. The enhanced catalytic performance can be attributed to the relatively high dispersion of cobalt and the absence of inert cobalt aluminates which are usually present in the catalysts synthesized by the conventional impregnation.

Notes

Acknowledgements

M. Lu thanks the China Scholarship Council for a fellowship to support her Ph.D. thesis in the UCCS in France, and the sponsor of research fund: School of Environment, Tsinghua University.

Supplementary material

10853_2017_1299_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2323 kb)

References

  1. 1.
    Tijmensen MJA, Faaij APC, Hamelinck CN (2002) Exploration of the possibilities for production of Fischer–Tropsch liquids and power via biomass gasification. Biomass Bioenerg 23:129–152CrossRefGoogle Scholar
  2. 2.
    Dry ME (1999) Fischer–Tropsch reactions and the environment. Appl Catal A 189:185–190CrossRefGoogle Scholar
  3. 3.
    Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744CrossRefGoogle Scholar
  4. 4.
    Cornaro U, Rossini S, Montanari T et al (2012) K-doping of Co/Al2O3, low temperature Fischer–Tropsch catalysts. Catal Today 197(1):101–108CrossRefGoogle Scholar
  5. 5.
    Zhang J, Chen J, Ren J, Li Y (2003) Support effect of Co/Al2O3 catalysts for Fischer–Tropsch synthesis. Fuel 82:581–586CrossRefGoogle Scholar
  6. 6.
    Tavasoli A, Trépanier M, Dalai AK et al (2010) Effects of confinement in carbon nanotubes on the activity, selectivity, and lifetime of Fischer–Tropsch Co/Carbon nanotube catalysts. J Chem Eng Data 55(8):2757–2763CrossRefGoogle Scholar
  7. 7.
    Dan IE, Rebours B, Roy-Auberger M et al (2002) In Situ, XRD Study of the influence of thermal treatment on the characteristics and the catalytic properties of cobalt-based Fischer–Tropsch catalysts. J Catal 205(2):346–353CrossRefGoogle Scholar
  8. 8.
    Guo Z, Chen W, Zhou J et al (2009) Novel high performance Ziegler–Natta catalyst for ethylene slurry polymerization. Chinese J Chem Eng 17(3):530–534CrossRefGoogle Scholar
  9. 9.
    Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis-calculations and concepts. Adv Catal 31(45):71–129Google Scholar
  10. 10.
    Smolders AJP, Lucassen ECHET, Bobbink R et al (2010) How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the sulphur bridge. Biogeochemistry 98(1):1–7CrossRefGoogle Scholar
  11. 11.
    Gilman JJ (1996) Mechanochemistry. Science 274(5284):65CrossRefGoogle Scholar
  12. 12.
    Pavel YB (1994) Problems in mechanochemistry and prospects for its development. Russ Chem Rev 63(12):965CrossRefGoogle Scholar
  13. 13.
    Fernandez-Bertran JF (1999) Mechanochemistry: an overview. Pure Appl Chem 71(4):581–586CrossRefGoogle Scholar
  14. 14.
    Sepelak V, Duvel A, Wilkening M et al (2013) Mechanochemical reactions and syntheses of oxides. Chem Soc Rev 42(18):7507–7520CrossRefGoogle Scholar
  15. 15.
    Baláž P, Baláž M, Bujňáková Z (2014) Mechanochemistry in technology: from minerals to nanomaterials and drugs. Chem Eng Technol 37(5):747–756CrossRefGoogle Scholar
  16. 16.
    Babu BJ, Velumani S, Kassiba A (2011) Structural and dielectrical studies on mechano-chemically synthesized indium doped CdS nanopowders. J Mater Sci 46(16):5417–5422. doi: 10.1007/s10853-011-5482-z CrossRefGoogle Scholar
  17. 17.
    Nowiński JL, Grabowski P, Garbarczyk JE et al (2011) Influence of the process variables on mechanosynthesis of AgI-Ag2O-WO3 system. Solid State Ionics 188:86–89CrossRefGoogle Scholar
  18. 18.
    Gotor FJ, Achimovicova M, Real C et al (2013) Influence of the milling parameters on the mechanical work intensity in planetary mills. Powder Technol 233(1):1–7CrossRefGoogle Scholar
  19. 19.
    Anvari SZ, Karimzadeh F, Enayati MH (2009) Synthesis and characterization of NiAl-Al2O3, nanocomposite powder by mechanical alloying. J Alloy Compd 477(1):178–181CrossRefGoogle Scholar
  20. 20.
    Hosseini SN, Karimzadeh F, Enayati MH (2012) Mechanochemical synthesis of Al2O3/Co nanocomposite by aluminothermic reaction. Adv Powder Technol 23(3):334–337CrossRefGoogle Scholar
  21. 21.
    Stolarski TA (1999) Mechano-chemical wear of ceramics. J Mater Sci 34(15):3609–3622. doi: 10.1023/A:1004634901779 CrossRefGoogle Scholar
  22. 22.
    Ozcan S, Akansel S, Ceylan A (2013) The influence of reactive milling on the structure and magnetic properties of nanocrystalline MnFe2O4. Ceram Int 39(5):5335–5341CrossRefGoogle Scholar
  23. 23.
    Belyaev E, Mamylov S, Lomovsky O (2000) Mechanochemical synthesis and properties of thermoelectric material β-FeSi2. J Mater Sci 35(8):2029–2035. doi:  10.1023/A:1004795225326 CrossRefGoogle Scholar
  24. 24.
    Tien-Thao N, Zahedi-Niaki MH, Alamdari H et al (2007) Conversion of syngas to higher alcohols over nanosized LaCo0.7Cu0.3O3, perovskite precursors. Appl Catal A-Gen 326(2):152–163CrossRefGoogle Scholar
  25. 25.
    Nazemi MK, Sheibani S, Rashchi F et al (2012) Preparation of nanostructured nickel aluminate spinel powder from spent NiO/Al2O3, catalyst by mechano-chemical synthesis. Adv Powder Technol 23(6):833–838CrossRefGoogle Scholar
  26. 26.
    Lu MN, Fatah N, Khodakov AY (2017) New shearing mechanical coating technology for synthesis of alumina-supported cobalt Fischer–Tropsch solid catalysts. J Mater Chem A 5:9148–9155CrossRefGoogle Scholar
  27. 27.
    Sheibani S, Ataie A, Heshmati-Manesh S et al (2007) Structural evolution in nano-crystalline Cu synthesized by high energy ball milling. Mater Lett 61(14–15):3204–3207CrossRefGoogle Scholar
  28. 28.
    Ban T, Okada K, Hayashi T et al (1992) Mechanochemical effects for some Al2O3, powders of dry grinding. J Mater Sci 27(2):465–471. doi: 10.1007/BF00543939 CrossRefGoogle Scholar
  29. 29.
    Khayati GR, Nourafkan E, Karimi G et al (2013) Synthesis of cuprous oxide nanoparticles by mechanochemical oxidation of copper in high planetary energy ball mill. Adv Powder Technol 24(1):301–305CrossRefGoogle Scholar
  30. 30.
    Choi D, Kumta PN (2007) Mechano-chemical synthesis and characterization of nanostructured β-TCP powder. Mater Sci Eng, C 27(3):377–381CrossRefGoogle Scholar
  31. 31.
    Kozma G, Kukovecz Á, Kónya Z (2007) Spectroscopic studies on the formation kinetics of SnO2, nanoparticles synthesized in a planetary ball mill. J Mol Struct 834(9):430–434CrossRefGoogle Scholar
  32. 32.
    Zhou L, Zhang H, Zhang H et al (2013) Homogeneous nanoparticle dispersion prepared with impurity-free dispersant by the ball mill technique. Particuology 11(4):441–447CrossRefGoogle Scholar
  33. 33.
    Iglesia E, Soled SL, Baumgartner JE et al (1995) Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer–Tropsch synthesis. Top Catal 2(1):17–27CrossRefGoogle Scholar
  34. 34.
    Fischer F, Tropsch H (1923) The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennstoff-Chem 4:276–285Google Scholar
  35. 35.
    Wei D, Goodwin JG Jr, Oukaci R et al (2001) Attrition resistance of cobalt F-T catalysts for slurry bubble column reactor use. Appl Catal A-Gen 210(1–2):137–150CrossRefGoogle Scholar
  36. 36.
    Øyvind B, Eri S, Blekkan EA et al (2007) Fischer–Tropsch synthesis over γ -alumina-supported cobalt catalysts: effect of support variables. J Catal 248(1):89–100CrossRefGoogle Scholar
  37. 37.
    Øyvind B, Dietzel PDC, Spjelkavik AI et al (2008) Fischer–Tropsch synthesis: cobalt particle size and support effects on intrinsic activity and product distribution. J Catal 259(2):161–164CrossRefGoogle Scholar
  38. 38.
    Lu MN, Fatah N, Khodakov AY (2016) Solvent-free synthesis of alumina supported cobalt catalysts for Fischer–Tropsch synthesis. J Energ Chem 25(6):1001–1007CrossRefGoogle Scholar
  39. 39.
    Naren PR, Fongarland P, Fatah N et al (2011) Simulation of Fixed Bed Methanator: Performance and thermal runaway characteristics, Récents Progrès en Génie des Procédés 101-2-910239-75-6 Paris FranceGoogle Scholar
  40. 40.
    Schlosser F (1988) Press the National School of Bridges and Roads 26Google Scholar
  41. 41.
    Turki D, Fatah N (2010) Description of consolidation forces on nanometric powders. Brazilian J Chem Eng 27(4):555–562CrossRefGoogle Scholar
  42. 42.
    Oukaci R, Singleton AH, Goodwin JG (1999) Comparison of patented Co F-T catalysts using fixed-bed and slurry bubble column reactors. Appl Catal A 186(1–2):129–144CrossRefGoogle Scholar
  43. 43.
    Liu J, Zhao Z, Lan J et al (2009) Catalytic combustion of soot over the highly active (La0.9K0.1CoO3)x/nmCeO2 catalysts. J Phys Chem C 113(39):17114–17123CrossRefGoogle Scholar
  44. 44.
    Zhang Q et al (2010) Development of Novel Catalysts for Fischer–Tropsch Synthesis: tuning the Product Selectivity. Chemcatchem 2(9):1030–1058CrossRefGoogle Scholar
  45. 45.
    Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128(12):3956–3964CrossRefGoogle Scholar
  46. 46.
    Iglesia E, Reyes SC, Madon RJ, Soled SL (1993) Selectivity control and catalyst design in the Fischer–Tropsch synthesis: sites, pellets, and reactors. Adv Catal 39:221–302Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Mengnan Lu
    • 1
    • 3
  • Nouria Fatah
    • 1
    • 2
  • Andrei Y. Khodakov
    • 1
  1. 1.UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, CNRS, Centrale Lille, ENSCLUniversity of Lille, University of ArtoisLilleFrance
  2. 2.Cité ScientifiqueEcole Nationale Supérieure de Chimie de LilleVilleneuve d’AscqFrance
  3. 3.State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory of Emerging Organic Contaminants Control (BKLEOCC), School of Environment, POPs Research CenterTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations