Journal of Materials Science

, Volume 52, Issue 19, pp 11306–11313 | Cite as

Effect of in-plane ordering on dielectric properties of highly {111}-oriented bismuth–zinc–niobate thin films

  • A. Le Febvrier
  • S. Députier
  • V. Demange
  • V. Bouquet
  • A. C. Galca
  • A. Iuga
  • L. Pintilie
  • M. Guilloux-Viry
Ceramics
  • 156 Downloads

Abstract

Bi1.5−xZn0.92−yNb1.5O6.92−δ (BZN) thin films were grown by pulsed laser deposition on two different Pt-covered substrates, namely textured {111}Pt/TiO2/SiO2/(100)Si substrate (Pt/Si) and epitaxial {111}Pt/R-plane sapphire substrate (Pt/sapphire). In both cases, the BZN films present {111} and {100} out-of-plane orientations, in relative ratios of 65:35 on Pt/Si and 80:20 on Pt/sapphire, respectively. The film grown on Pt/Si is textured, while the film deposited on Pt/sapphire presents epitaxial-like relationships with the substrate, for both out-of-plane orientations. Dielectric measurements were taken on both types of thin films, using Pt/BZN/Pt planar capacitor structures. The BZN/Pt/sapphire film presents higher dielectric constant (245 at 100 kHz) and higher tunability (12% at 600 kV/cm) than the BZN/Pt/Si film (200; 6%), while the dielectric losses values are nearly same (~0.05).

References

  1. 1.
    Kong LB, Li S, Zhang TS, Zhai JW, Boey FYC, Ma J (2010) Electrically tunable dielectric materials and strategies to improve their performances. Prog Mater Sci 55:840–893CrossRefGoogle Scholar
  2. 2.
    Gevorgian S (2009) Ferroelectrics in microwave devices, circuits and systems: physics, modelling, fabrication and measurements. Springer, LondonCrossRefGoogle Scholar
  3. 3.
    Simon Q, Corredores Y, Castel X, Benzerga R, Sauleau R, Mahdjoubi K, Le Febvrier A, Députier S, Guilloux-Viry M, Zhang L, Laurent P, Tanné G (2011) Highly tunable microwave stub resonator on ferroelectric KTa0.5Nb0.5O3 thin film. Appl Phys Lett 99:092904CrossRefGoogle Scholar
  4. 4.
    Kim H-S, Kim H-G, Kim I-D, Kim K-B, Lee J-C (2005) High-tunability and low-microwave-loss Ba0.6Sr0.4TiO3 thin films grown on high-resistivity Si substrates using TiO2 buffer layers. Appl Phys Lett 87:212903CrossRefGoogle Scholar
  5. 5.
    Ren W, Trolier-McKinstry S, Randall CA, Shrout TR (2001) Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications. J Appl Phys 89:767–774CrossRefGoogle Scholar
  6. 6.
    Thayer RL, Randall CA, Trolier-McKinstry S (2003) Medium permittivity bismuth zinc niobate thin film capacitors. J Appl Phys 94:1941–1947CrossRefGoogle Scholar
  7. 7.
    Nino JC, Lanagan MT, Randall CA (2001) Dielectric relaxation in Bi2O3–ZnO–Nb2O5 cubic pyrochlore. J Appl Phys 89:4512–4516CrossRefGoogle Scholar
  8. 8.
    Zhang X, Ren W, Shi P, Wu X, Chen X, Yao X (2013) Structures and dielectric properties of pyrochlore bismuth zinc niobate thin films with zinc compensation. J Alloys Compd 553:8–13CrossRefGoogle Scholar
  9. 9.
    Hong YP, Ha S, Lee HY, Lee YC, Ko KH, Kim D-W, Hong HB, Hong KS (2002) Voltage tunable dielectric properties of rf sputtered Bi2O3–ZnO–Nb2O5 pyrochlore thin films. Thin Solid Films 419:183–188CrossRefGoogle Scholar
  10. 10.
    Lu J, Stemmer S (2003) Low-loss, tunable bismuth zinc niobate films deposited by rf magnetron sputtering. Appl Phys Lett 83:2411–2413CrossRefGoogle Scholar
  11. 11.
    Cao LZ, Fu WY, Wang SF, Wang Q, Sun ZH, Yang H, Cheng BL, Wang H, Zhou YL (2007) C-axial oriented (Bi1.5 Zn0.5)(Zn0.5 Nb1.5)O7 thin film grown on Nb doped SrTiO3 substrate by pulsed laser deposition. J Phys D Appl Phys 40:1460–1463CrossRefGoogle Scholar
  12. 12.
    Le Febvrier A, Galca A-C, Corredores Y, Députier S, Bouquet V, Demange V, Castel X, Sauleau R, Lefort R, Zhang L, Tanné G, Pintilie L, Guilloux-Viry M (2012) Structural, optical and dielectric properties of Bi1.5−xZn0.92−yNb1.5O6.92−δ thin films grown by PLD on R-plane sapphire and LaAlO3 substrates. ACS Appl Mater Interfaces 4:5227–5233CrossRefGoogle Scholar
  13. 13.
    Zhang X, Ren W, Shi P, Tian A, Xin H, Chen X, Wu X, Yao X (2010) Influence of substrate temperature on structures and dielectric properties of pyrochlore Bi1.5Zn1.0Nb1.5O7 thin films prepared by pulsed laser deposition. Appl Surf Sci 256:6607–6611CrossRefGoogle Scholar
  14. 14.
    Al Garni SE, Qasrawi AF, Mergen A (2016) Physical properties of the Bi1.5Zn0.92−2xHfxNb1.5O6.92 solid solutions. Ceram Int 42:3372–3379CrossRefGoogle Scholar
  15. 15.
    Michael EK, Trolier-McKinstry S (2015) Cubic pyrochlore bismuth zinc niobate thin films for high-temperature dielectric energy storage. J Am Ceram Soc 98:1223–1229CrossRefGoogle Scholar
  16. 16.
    Lee YC, Hong YP, Kim DM, Ko KH (2006) Very high tunable inter-digital capacitor using bismuth zinc niobate thin-film dielectrics for microwave applications. Electron Lett 42:851–853CrossRefGoogle Scholar
  17. 17.
    Lee YC, Ko KH (2010) Tunable coplanar waveguide (CPW line integrating bismuth zinc niobate (BZN) thin films. Prog Electromagn Res Lett 19:75–82CrossRefGoogle Scholar
  18. 18.
    Cao LZ, Fu WY, Wang SF, Wang Q, Sun ZH, Yang H, Cheng BL, Wang H, Zhou YL (2007) Effects of film thickness and preferred orientation on the dielectric properties of (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7 films. J Phys D Appl Phys 40:2906–2910CrossRefGoogle Scholar
  19. 19.
    Duclère JR, Mc Loughlin C, Fryar J, O’Haire R, Guilloux-Viry M, Meaney A, Perrin A, McGlynn E, Henry MO, Mosnier JP (2006) ZnO thin films grown on platinum (111) buffer layers by pulsed laser deposition. Thin Solid Films 500:78–83CrossRefGoogle Scholar
  20. 20.
    Valant M, Davies PK (1999) Synthesis and dielectric properties of pyrochlore solid solutions in the Bi2O3–ZnO–Nb2O5–TiO2 system. J Mater Sci 34:5437–5442. doi:10.1023/A:1004787706600 CrossRefGoogle Scholar
  21. 21.
    Roisnel T, Rodriguez-Carvajal J (2001) WinPLOTR: a windows tool for powder diffraction pattern analysis. Mater Sci Forum 378-3:118–123CrossRefGoogle Scholar
  22. 22.
    Le Febvrier A, Députier S, Bouquet V, Demange V, Ollivier S, Galca AC, Dragoi C, Radu R, Pintilie L, Guilloux-Viry M (2012) Ferroelectric and dielectric multilayer heterostructures based on KTa0.65Nb0.35O3 and Bi1.5−xZn0.92−yNb1.5O6.92–1.5xy grown by pulsed laser deposition and chemical solution deposition for high frequency tunable devices. Thin Solid Films 520:4564–4567CrossRefGoogle Scholar
  23. 23.
    Wang X, Wang H, Yao X (1997) Structures, phase transformations, and dielectric properties of pyrochlores containing bismuth. J Am Ceram Soc 80:2745–2748CrossRefGoogle Scholar
  24. 24.
    Nefedov A, Abromeit A, Morawe C, Stierle A (1998) High-resolution x-ray scattering study of platinum thin films on sapphire. J Phys Condens Matter 10:717–730CrossRefGoogle Scholar
  25. 25.
    Vargas R, Goto T, Zhang W, Hirai T (1994) Epitaxial growth of iridium and platinum films on sapphire by metalorganic chemical vapor deposition. Appl Phys Lett 65:1094–1096CrossRefGoogle Scholar
  26. 26.
    Li H-C, Si W, West AD, Xi XX (1998) Thickness dependence of dielectric loss in SrTiO3 thin films. Appl Phys Lett 73:464–466CrossRefGoogle Scholar
  27. 27.
    Oh J, Moon T, Kim T-G, Kim C, Lee JH, Lee SY, Park B (2007) The dependence of dielectric properties on the thickness of (Ba, Sr)TiO3 thin films. Curr Appl Phys 7:168–171CrossRefGoogle Scholar
  28. 28.
    Yang L, Ponchel F, Wang G, Remiens D, Legier J-F, Chateigner D, Dong X (2010) Microwave properties of epitaxial (111)-oriented Ba0.6Sr0.4TiO3 thin films on Al2O3(0001) up to 40 GHz. Appl Phys Lett 97:162909-3Google Scholar
  29. 29.
    Liu Y, Withers R, Welberry TR, Wang H, Du H-L, Yao X (2008) Structural disorder in BZN-based pyrochlores. J Electroceram 21:401–404CrossRefGoogle Scholar
  30. 30.
    Liu Y, Withers RL, Nguyen B, Wei XY (2007) Towards the development of high-performance, frequency agile, Rf/microwave dielectric ceramics based on nanoscale structural analysis. Aust Ceram Soc 43:75–78Google Scholar
  31. 31.
    Wei W, Pingfan N, Jinglu F, Weixing W (2014) Mechanism of dielectric nonlinear characteristics in bismuth-based cubic pyrochlores. Ceram Int 40:13841–13845CrossRefGoogle Scholar
  32. 32.
    Brooks Hinojosa B, Asthagiri A, Nino JC (2013) Energy landscape in frustrated systems: cation hopping in pyrochlores. Appl Phys Lett 103:022901CrossRefGoogle Scholar
  33. 33.
    Kamba S, Porokhonskyy V, Pashkin A, Bovtun V, Petzelt J, Nino JC, Trolier-McKinstry S, Lanagan MT, Randall CA (2002) Anomalous broad dielectric relaxation in Bi1.5Zn1.0Nb1.5O7 pyrochlore. Phys Rev B 66:054106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institut des Sciences Chimiques de Rennes, UMR CNRS 6226Université de Rennes 1Rennes CedexFrance
  2. 2.National Institute of Materials PhysicsMagurele, IlfovRomania
  3. 3.Thin Film Physics Group, Department of Physics, Chemistry, and Biology (IFM)Linköping UniversityLinköpingSweden

Personalised recommendations