Journal of Materials Science

, Volume 52, Issue 19, pp 11537–11546 | Cite as

Ag composition gradient CuCr0.93Mg0.07O2/Ag/CuCr0.93Mg0.07O2 coatings with improved p-type optoelectronic performances

  • Hui Sun
  • Mohammad Arab Pour Yazdi
  • Sheng-Chi Chen
  • Chao-Kuang Wen
  • Frederic Sanchette
  • Alain Billard
Electronic materials


The optoelectronic properties of Mg-doped CuCrO2 with delafossite structure were enhanced by stacking CuCr0.93Mg0.07O2/Ag/CuCr0.93Mg0.07O2 multilayers. The influences of the deposition time of the Ag and the thickness of the CuCr0.93Mg0.07O2 layers on the film’s performance were investigated. When the stacks were deposited under our deposition conditions, no continuous Ag layer was observed. The diffusion of Ag atoms into the neighboring CuCr0.93Mg0.07O2 layers caused a composition gradient of Ag in the films and caused Cr3+ cations to be replaced by Ag+ cations, which is beneficial for improving the conductivity of the films. When the Ag deposition time was increased, Schottky barriers occurred between Ag nanocrystallites and CuCr0.93Mg0.07O2 grains, lowering the films’ optoelectronic performances. The multilayers’ optoelectronic performances were enhanced when the thickness of the CuCr0.93Mg0.07O2 layers was decreased. Optimal films with a relatively high figure of merit of 2.37 × 10−7 Ω−1 can be achieved when the deposition time of Ag and the thickness of CuCrO2:Mg layers are optimized.



We gratefully acknowledge the China Scholarship Council (No. 201204490126) and Pays de Montbéliard-Agglomération for their financial support of this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ellmer K (2012) Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics 6:809–817CrossRefGoogle Scholar
  2. 2.
    Wu YJ, Liu YS, Hsieh CY, Lee PM, Wei YS, Liao CH, Liu CY (2015) Study of p-type AlN doped SnO2 thin films and its transparent devices. Appl Surf Sci 328:262–268CrossRefGoogle Scholar
  3. 3.
    Al-Jawhari HA (2015) A review of recent advances in transparent p-type Cu2O-based thin film transistors. Mater Sci Semicond Process 40:241–252CrossRefGoogle Scholar
  4. 4.
    Figueiredo V, Elangovan E, Barros R, Pinto JV, Busani T, Martin R, Fortunato E (2012) p-type CuxO films deposited at room temperature for thin-film transistors. J Disp Technol 8:41–47CrossRefGoogle Scholar
  5. 5.
    Chawla S, Jayanthi K, Khan ZH, Shah J, Kotnala RK (2010) Near UV emission and p-type conductivity in Zn1−xLixO and Zn1−xNaxO nanomaterial system. Mater Design 31:1666–1670CrossRefGoogle Scholar
  6. 6.
    Mannam R, Eswaran SK, Dasgupta N, Ramachandra Rao MS (2015) Zn-vacancy induced violet emission in p-type phosphorus and nitrogen codoped ZnO thin films grow by pulsed laser deposition. Appl Surf Sci 347:96–100CrossRefGoogle Scholar
  7. 7.
    Kawazoe H, Yanagi H, Ueda K, Hosono H (2000) Transparent p-type conducting oxides: design and fabrication of p–n heterojunctions. MRS Bull 25:28–36CrossRefGoogle Scholar
  8. 8.
    Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) P-type electrical conduction in transparent thin films of CuAlO2. Nature 389:939–942CrossRefGoogle Scholar
  9. 9.
    Dong GB, Zhang M, Wang M, Li YZ, Gao FY, Yan H, Diao XG (2014) Influences of film thickness on the structural, electrical and optical properties of CuAlO2 thin films. Supperlattices Microstruct 71:177–184CrossRefGoogle Scholar
  10. 10.
    Robertson J, Gillen R, Clark SJ (2012) Advances in understanding of transparent conducting oxides. Thin Solid Films 520:3714–3720CrossRefGoogle Scholar
  11. 11.
    Ursu D, Miclau M, Banica R, Vaszilcsin N (2015) Impact of Fe doping on performance of CuGaO2 p-type dye-sensitized solar cells. Mater Lett 143:91–93CrossRefGoogle Scholar
  12. 12.
    Nagarajan R, Draeseke AD, Sleight AW, Tate J (2001) P-type conductivity in CuCr1−xMgxO2 films and powders. J Appl Phys 89:8022–8025CrossRefGoogle Scholar
  13. 13.
    Kim HJ, Seo KW, Kim YH, Choi J, Kim HK (2015) Direct laser patterning of transparent ITO-Ag-ITO multilayer anodes for organic solar cells. Appl Surf Sci 328:215–221CrossRefGoogle Scholar
  14. 14.
    Miao DG, Jiang SX, Shang SM, Chen ZM (2014) Infrared reflective properties of AZO/Ag/AZO trilayers prepared by RF magnetron sputtering. Ceram Int 40:12847–12853CrossRefGoogle Scholar
  15. 15.
    Park HK, Kang JW, Na SI, Kim DY, Kim HK (2009) Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics. Sol Energy Mater Sol Cells 93:1994–2002CrossRefGoogle Scholar
  16. 16.
    Yang H, Shim S, Park J, Ham G, Oh J, Jeon H (2014) Effect of Au interlayer thickness on the structural, electrical, and optical properties of GZO/Au/GZO multilayers. Curr Appl Phys 14:1331–1334CrossRefGoogle Scholar
  17. 17.
    Oh D, No YS, Kim SY, Cho WJ, Kwack KD, Kim TW (2011) Effect of Ag film thickness on the optical and the electrical properties in CuAlO2/Ag/CuAlO2 multilayer films grown on glass substrates. J Alloys Compd 509:2176–2179CrossRefGoogle Scholar
  18. 18.
    Sun H, Yazdi MAP, Sanchette F, Billard A (2016) Optoelectronic properties of delafossite structure CuCr0.93Mg0.07O2 sputter deposited films. J Phys D 49:185105CrossRefGoogle Scholar
  19. 19.
    Yazdi MAP, Briois P, Billard A (2009) Influence of the annealing conditions on the structure of BaCe1−xYxO3−α films elaborated by DC magnetron sputtering at room temperature. Mater Chem Phys 1171:178–182CrossRefGoogle Scholar
  20. 20.
    Haacke G (1976) New figure of merit for transparent conductors. J Appl Phys 47:4086–4089CrossRefGoogle Scholar
  21. 21.
    Jang JS, Park SJ, Seong TY (1999) Formation of low resistance Pt ohmic contacts to p-type GaN using two-step surface treatment. J Vac Sci Technol, B 17:2667–2670CrossRefGoogle Scholar
  22. 22.
    Chiu TW, Tsai SW, Wang YP, Hsu KH (2012) Preparation of p-type conductive transparent CuCrO2: Mg thin films by chemical solution deposition with two-step annealing. Ceram Int 38S:S673–S676CrossRefGoogle Scholar
  23. 23.
    Wang YF, Gu YJ, Wang T, Shi WZ (2011) Magnetic, optical and electrical properties of Mn-doped CuCrO2 thin films prepared by chemical solution deposition method. J Sol-gel Sci Technol 59:222–227CrossRefGoogle Scholar
  24. 24.
    Barnabe A, Thimont Y, Lalanne M, Presmanes L, Tailhades P (2015) p-type conducting transparent characteristics of delafossite Mg-doped CuCrO2 thin films prepared by RF-sputtering. J Mater Chem C 3:6012–6024CrossRefGoogle Scholar
  25. 25.
    Lin FT, Gao C, Zhou XS, Shi WZ, Liu AY (2013) Magnetic, electrical and optical properties of p-type Fe-doped CuCrO2 semiconductor thin films. J Alloys Compd 581:502–507CrossRefGoogle Scholar
  26. 26.
    Li D, Fang XD, Zhao AW, Deng ZH, Dong WW, Tao RH (2010) Physical properties of CuCrO2 films prepared by pulsed laser deposition. Vacuum 84:851–856CrossRefGoogle Scholar
  27. 27.
    Shigesato Y, Takaki S, Haranoh T (1992) Electrical and structural properties of low resistivity tin-doped indium oxide films. J Appl Phys 71:3356–3364CrossRefGoogle Scholar
  28. 28.
    Chen HY, Chang KP (2013) Influence of post-annealing conditions on the formation of delafossite-CuCrO2 films. ECS J Solid State Sci Technol 2(3):76–80CrossRefGoogle Scholar
  29. 29.
    Gotzendorfer S, Lobmann P (2011) Influence of single layer thickness on the performance of undoped and Mg-doped CuCrO2 thin films by sol-gel processing. J Sol-gel Sci Technol 57:157–163CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Hui Sun
    • 1
  • Mohammad Arab Pour Yazdi
    • 1
  • Sheng-Chi Chen
    • 2
    • 3
  • Chao-Kuang Wen
    • 4
  • Frederic Sanchette
    • 5
    • 6
  • Alain Billard
    • 1
    • 7
  1. 1.FEMTO-ST UMR 6174, CNRS, UTBM, Site de MontbéliardUniv. Bourgogne Franche-ComtéBelfort CedexFrance
  2. 2.Department of Materials Engineering and Center for Thin Film Technologies and ApplicationsMing Chi University of TechnologyTaipeiTaiwan
  3. 3.Department of Electronic EngineeringChang Gung UniversityTaoyuanTaiwan
  4. 4.Institute of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan
  5. 5.ICD LASMIS Institut Charles Delaunay, Laboratoire des Systèmes Mécaniques et d’Ingénierie Simultanée (UMR CNRS 6279), Pôle Technologique de Haute-ChampagneUTT, Antenne de Nogent-52NogentFrance
  6. 6.LRC CEA-ICD LASMIS, Nogent International Center for CVD Innovation (NICCI), Pôle Technologique de Haute ChampagneUTT Antenne de NogentNogentFrance
  7. 7.LRC CEA/UTBM LIS-HP, Site de MontbéliardBelfort CedexFrance

Personalised recommendations