Advertisement

Journal of Materials Science

, Volume 52, Issue 18, pp 10766–10778 | Cite as

Fabrication of CuO nanoparticles coated bacterial nanowire film for a high-performance electrochemical conductivity

  • Muthuchamy Maruthupandy
  • Muthusamy Anand
  • Govindhan Maduraiveeran
  • Akbar Sait Hameedha Beevi
  • Radhakrishnan Jeeva Priya
Chemical routes to materials

Abstract

Highly dispersed copper oxide nanoparticles (CuO NPs) with the dimensions from 3 to 5 nm have been effectively synthesized by simple precipitation method of copper acetate precursor at 80 °C. UV–visible spectrophotometer, fourier transform infrared, X-ray diffraction, atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscope (HRTEM) technique had been used for the structural characterization of CuO NPs. The CuO NPs are extremely dense, uniform and exhibited excellent crystalline array structure. In this present study, CuO NPs were successfully coated on the bacterial nanowires via electrodeposition process and further characterized structurally using HRTEM. The conductivity of bacterial nanowires and CuO NPs coated bacterial nanowires was measured using cyclic voltmeter and electrochemical impedance spectroscopy. The bacterial nanowires exhibited the polarization resistance (R p) to be about 4044.5 Ω, and CuO NPs coated bacterial nanowires polarization resistance (R p) was 2618.6 Ω. It was concluded that the improved conductivity of CuO NPs coated bacterial nanowires provides a promising lead for its potential application in sensor and nanodevices.

Notes

Acknowledgements

The authors are grateful to University Grants Commission (F.No.39-559/2010 (SR), dt.12.01.2011), Government of India, New Delhi, and DST PURSE Scheme, Madurai Kamaraj University, for their financial support. The authors express their thanks to the University with Potential for Excellence (UPE) Scheme, Madurai Kamaraj University, for generously providing instruments facility.

References

  1. 1.
    Lu JP, Chang P, Fan Z (2006) Hierarchical nanostructures of cupric oxide on a copper substrate: controllable morphology and wettability. Mater Sci Eng R-Rep 52:49–91CrossRefGoogle Scholar
  2. 2.
    Yang M, He J, Hu X, Yan C, Cheng Z (2011) CuO nanostructures as quartz crystal microbalance sensing layers for detection of trace hydrogen cyanide gas. Environ Sci Technol 45:6088–6094CrossRefGoogle Scholar
  3. 3.
    Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–237CrossRefGoogle Scholar
  4. 4.
    Tran TH, Nguyen VT (2014) Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: a brief review. Int Sch Res Not 2014:856592Google Scholar
  5. 5.
    Toboonsung B, Singjai P (2011) Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process. J Alloys Compd 509:4132–4137CrossRefGoogle Scholar
  6. 6.
    Gao MR, Xu YF, Jiang J, Yu SH (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42:2986–3017CrossRefGoogle Scholar
  7. 7.
    Li Y, Wang X, Yang Q, Javed MS, Liu Q, Xu W, Hu C, Wei D (2017) Ultra-fine CuO nanoparticles embedded in three-dimensional graphene network nano-structure for high-performance flexible supercapacitors. Electrochim Acta 234:63–70CrossRefGoogle Scholar
  8. 8.
    Li G, Cui H, Chen J, Fang X, Feng W, Liu J (2017) Formation and effects of CuO nanoparticles on Ag/SnO2 electrical contact materials. J Alloys Compd 696:1228–1234CrossRefGoogle Scholar
  9. 9.
    Baturay S, Tombak A, Kaya D, Ocak YS, Tokus M, Aydemir M, Kilicoglu T (2016) Modification of electrical and optical properties of CuO thin films by Ni doping. J Sol-Gel Sci Technol 78:422–429CrossRefGoogle Scholar
  10. 10.
    Dagher S, Haik Y, Ayesh AI, Tit N (2014) Synthesis and optical properties of colloidal CuO nanoparticles. J Lumin 151:149–154CrossRefGoogle Scholar
  11. 11.
    Qian K, Qian Z, Hua Q, Jiang Z, Huang W (2013) Structure–activity relationship of CuO/MnO2 catalysts in CO oxidation. Appl Surf Sci 273:357–363CrossRefGoogle Scholar
  12. 12.
    Ikram M, Imran M, Nunzi JM, Ali S (2015) Efficient inverted hybrid solar cells using both CuO and P3HT as an electron donor materials. J Mater Sci Mater Electron 26:6478–6483CrossRefGoogle Scholar
  13. 13.
    Li SK, Pan YY, Wu M, Huang FZ, Li CH, Shen YH (2014) Large-scale and green synthesis of octahedral flower-like cupric oxide nanocrystals with enhanced photochemical properties. Appl Surf Sci 315:169–177CrossRefGoogle Scholar
  14. 14.
    Magimai Antoni Raj D, Dhayal Raj A, Albert Irudayaraj A, Josephine RL, Senthil Kumar M, Thambidurai M (2015) One step synthesis, optimization and growth mechanism carambola fruit shaped CuO nanostructures: electrochromic performance. J Mater Sci Mater Electron 26:659–665CrossRefGoogle Scholar
  15. 15.
    Shapiro L (1995) The bacterial flagellum: from genetic network to complex architecture. Cell 80:525–527CrossRefGoogle Scholar
  16. 16.
    Beznosov SN, Veluri PS, Pyatibratov MG, Chatterjee A, MacFarlane DR, Fedorov OV, Mitra S (2015) Flagellar filament bio-templated inorganic oxide materials—towards an efficient lithium battery anode. Sci Rep 5:7736. doi: 10.1038/srep07736 CrossRefGoogle Scholar
  17. 17.
    El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Laud WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci USA 107:18127–18131CrossRefGoogle Scholar
  18. 18.
    Leung KM, Wanger G, Guo Q, Gorby Y, Southam G, Lau WM, Yang J (2011) Bacterial nanowires: conductive as silicon, soft as polymer. Soft Matter 7:6617–6621CrossRefGoogle Scholar
  19. 19.
    Wang CH, Liao WS, Ku NJ, Li YC, Chen YC, Tu LW, Liu CP (2014) Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays. Small 10:4718–4725CrossRefGoogle Scholar
  20. 20.
    Foresti ML, Vázquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym 157:447–467CrossRefGoogle Scholar
  21. 21.
    Anand M, Maruthupandy M, Hameedha Beevi AS, Jeeva Priya R (2015) Simplified method for isolation and separation of bacterial nanowires from Pseudomonas aeruginosa. Nanomed Nanobiol 2:43–48Google Scholar
  22. 22.
    Maruthupandy M, Anand M, Maduraiveeran G, Hameedha Beevi AS, Jeeva Priya R (2015) Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa. Adv Nat Sci Nanosci Nanotechnol 6:045007-1–045007-7CrossRefGoogle Scholar
  23. 23.
    Jo W, Cheang UK, Kim MJ (2014) Development of flagella bio-templated nanomaterials for electronics. Nano Converg 1:10. doi: 10.1186/s40580-014-0010-x CrossRefGoogle Scholar
  24. 24.
    Zhu J, Bi H, Wang Y, Wang X, Yang X, Lu L (2008) Solution-phase synthesis of Cu2O cubes using CuO as a precursor. Mater Lett 62:2081–2083CrossRefGoogle Scholar
  25. 25.
    Maruthupandy M, Anand M, Maduraiveeran G, Suresh S, Hameedha Beevi AS, Jeeva Priya R (2016) Investigation on the electrical conductivity of ZnO nanoparticles-decorated bacterial nanowires. Adv Nat Sci Nanosci Nanotechnol 7:045011-1–045011-9CrossRefGoogle Scholar
  26. 26.
    Yin M, Wu CK, Lou Y, Burda C, Koberstein JT, Zhu Y, O’Brien S (2005) Copper oxide nanocrystals. J Am Chem Soc 127:9506–9511CrossRefGoogle Scholar
  27. 27.
    Wang C, Shao C, Wang L, Zhang L, Li X, Liu Y (2009) Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. J Colloid Interface Sci 333:242–248CrossRefGoogle Scholar
  28. 28.
    El-Trass A, Elshamy H, El-Mehasse I, El-Kemary M (2012) CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl Surf Sci 258:2997–3001CrossRefGoogle Scholar
  29. 29.
    Phiwdang K, Suphankij S, Mekprasart W, Pecharapa W (2013) Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia 34:740–745CrossRefGoogle Scholar
  30. 30.
    Abaker M, Umar A, Baskoutas S, Kim SH, Hwang SW (2011) Structural and optical properties of CuO layered hexagonal discs synthesized by a low-temperature hydrothermal process. J Phys D Appl Phys 44:155405CrossRefGoogle Scholar
  31. 31.
    Son DI, You CH, Kim TW (2009) Structural, optical, and electronic properties of colloidal CuO nanoparticles formed by using a colloid-thermal synthesis process. Appl Surf Sci 255:8794–8797CrossRefGoogle Scholar
  32. 32.
    Topnani N, Kushwaha K, Athar T (2009) Wet synthesis of copper oxide nanopowder. Int J Green Nanotechnol Mater Sci Eng 1:M67–M73CrossRefGoogle Scholar
  33. 33.
    Du F, Liu J, Guo Z (2009) Shape controlled synthesis of Cu2O and its catalytic application to synthesize amorphous carbon nanofibers. J Mater Res Bull 44:25–29CrossRefGoogle Scholar
  34. 34.
    Jo W, Darmawan M, Kim J, Ahn CW, Byun D, Baik SH, Kim MJ (2013) Electrical property measurements of metallized flagella-templated silica nanotube networks. Nanotechnology 24:135704CrossRefGoogle Scholar
  35. 35.
    Shaikh JS, Pawar RC, Moholkar AV, Kim JH, Patil PS (2011) CuO–PAA hybrid films: chemical synthesis and supercapacitor behavior. Appl Surf Sci 257:4389–4397CrossRefGoogle Scholar
  36. 36.
    Yuan YF, Xia XH, Wu JB, Yang IL, Chen YB, Guo SY (2010) Hierarchically Ordered Porous Nickel oxide array film with enhanced electrochemical properties for lithium ion batteries. Electrochem Commun 12:890–893CrossRefGoogle Scholar
  37. 37.
    Gouveia-Caridade C, Romeiro A, Brett CMA (2008) Electrochemical and morphological characterisation of polyphenazine films on copper. Appl Surf Sci 285:380–388CrossRefGoogle Scholar
  38. 38.
    Yu L, Zhang G, Wu Y, Bai X, Guo D (2008) Cupric oxide nanoflowers synthesized with a simple solution route and their field emission. J Cryst Growth 310:3125–3130CrossRefGoogle Scholar
  39. 39.
    Meher SK, Justin P, Ranga Rao G (2011) Nanoscale morphology dependent pseudocapacitance of NiO: Influence of intercalating anions during synthesis. Nanoscale 3:683–692CrossRefGoogle Scholar
  40. 40.
    Lai Y, Li Y, Jiang L, Xu W, Lv X, Li J (2012) Electrochemical behaviors of co-deposited Pb/Pb–MnO2 composite anode in sulfuric acid solution—Tafel and EIS investigations. J Electroanal Chem 671:16–23CrossRefGoogle Scholar
  41. 41.
    Padalkar S, Hulleman JD, Kim SM, Rochet JC, Stach EA, Stanciu LA (2008) Protein-templated semiconductor nanoparticle chains. Nanotechnology 19:275602CrossRefGoogle Scholar
  42. 42.
    Rajput D, Costa L, Terekhov A, Lansford K, Hofmeister W (2012) Silica coating of polymer nanowires produced via nanoimprint lithography from femtosecond laser machined templates. Nanotechnology 23:10CrossRefGoogle Scholar
  43. 43.
    Keng PY, Kim BY, Shim I-B, Sahoo R, Veneman PE, Armstrong NR, Yoo H, Pemberton JE, Bull MM, Griebel JJ, Ratcliff EL, Nebesny KG, Pyun J (2009) Colloidal polymerization of polymer coated ferromagnetic nanoparticles into cobalt oxide nanowires. ACS Nano 3:3143–3157CrossRefGoogle Scholar
  44. 44.
    Jiang F, Nie Y, Yin L, Feng Y, Yu Q, Zhong C (2016) Core-shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. J. Membrane Sci 510:1–9CrossRefGoogle Scholar
  45. 45.
    Janpetch N, Saito N, Rujiravanit R (2016) Fabrication of bacterial cellulose-ZnO composite via solution plasma process for antibacterial applications. Carbohydr Polym 148:335–344CrossRefGoogle Scholar
  46. 46.
    Gao R, Chen X, Chen C, Shi R, Ouyang F, Yang J, Sun D, Liu J (2016) Synthesis of BC@mTiO2 hybrid nanofibers for highly efficient enrichment and detection of phosphopeptides. Cellulose 23:2475–2485CrossRefGoogle Scholar
  47. 47.
    Wan Y, Yang Z, Xiong G, Luo H (2015) A general strategy of decorating 3D carbon nanofiber aerogels derived from bacterial cellulose with nano-Fe3O4 for high-performance flexible and binder-free lithium-ion battery anodes. J Mater Chem A 3:15386–15393CrossRefGoogle Scholar
  48. 48.
    Puranik SS, Joshi HM, Ogale SB, Paknikar KM (2008) Hydrazine based facile synthesis and ordered assembly of metal nanoparticles (Au, Ag) on a bacterial surface layer protein template. J Nanosci Nanotechnol 8:3565–3569CrossRefGoogle Scholar
  49. 49.
    Liu S, Yan W, Cao X, Zhou Z, Yang R (2016) Bacterial-cellulose-derived carbon nanofiber-supported CoFe2O4 as efficient electrocatalyst for oxygen reduction and evolution reactions. Int J Hydrog Energy 41:5351–5360CrossRefGoogle Scholar
  50. 50.
    Huang Y, Lin Z, Zheng M, Wang T, Yang J, Yuan F, Lu X, Liu L, Sun D (2016) Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J Power Sources 307:649–656CrossRefGoogle Scholar
  51. 51.
    Wang B, Li X, Luo B, Yang J, Wang X, Song Q, Chen S, Zhi L (2013) Pyrolyzed bacterial cellulose: a versatile support for lithium ion battery anode materials. Small 9:2399–2404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Marine and Coastal Studies, School of Energy, Environment and Natural ResourcesMadurai Kamaraj UniversityMaduraiIndia
  2. 2.School of Chemistry and Chemical Engineering, The Key Laboratory of Environment Friendly Polymer Materials of Anhui ProvinceAnhui UniversityHefeiPeople’s Republic of China
  3. 3.Department of ChemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations