Journal of Materials Science

, Volume 52, Issue 17, pp 10062–10072 | Cite as

Enhanced electrical energy storage properties in La-doped (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics by addition of La2O3 and La(NO3)3

  • Jiwen Xu
  • Xiaopeng Lu
  • Ling Yang
  • Changrong Zhou
  • Yangyang Zhao
  • Haibo Zhang
  • Xiaowen Zhang
  • Wei Qiu
  • Hua WangEmail author


Lead-free [(Bi0.5Na0.5)0.93Ba0.07]1−x La x TiO3 (BNBLT) ceramics for energy storage application were prepared by traditional solid-state reaction technique, and the La3+ ions doping content was varied at 0 ≤ x ≤ 0.04. The BNBLT ceramics showed single-phase perovskite structure without impurity phase. Compact and uniform microstructure with fine grain size was obtained. The remanent polarization and coercive field decreased with the increase in La3+ ions doping content, and the energy storage density increased drastically. The maximum energy storage density of the BNBLT ceramics at x = 0.04 was 1.09 J/cm3 by using La2O3 powders and can be further increased to 1.21 J/cm3 using La(NO3)3 powders, and meanwhile, the breakdown field strength increased obviously. Anti-ferroelectric-like behavior with a double pinched PE hysteresis loop was observed in La3+-doped BNBLT ceramics at room temperature, which is promising candidate for energy storage dielectric ceramic.



This work is supported by the National Nature Science Foundation of China (11664006), Guangxi Nature Science Foundation (2016GXNSFAA380069) and Guangxi Key Laboratory of Information Materials (151017-Z, 161001-Z).


  1. 1.
    Hao X (2013) A review on the dielectric materials for high energy-storage application. J Adv Dielectr 3(1):1330001-1–1330001-14CrossRefGoogle Scholar
  2. 2.
    Zhang N, Feng Y, Xu Z (2011) Effects of lanthanum modification on electrical and dielectric properties of Pb(Zr0.70,Ti0.30)O3 ceramics. Mater Lett 65(11):1611–1614CrossRefGoogle Scholar
  3. 3.
    Bikyashev EA, Ryush IO, Reshetnikova EA (2017) Structures of Pb1−xLax[Zr0.9Mg(0.1+x)/3Nb(0.2−x)/3]O3 solid solutions, electrostriction and energy storage characteristics of a new antiferroelectric phase with disturbed translational symmetry. Ceram Int 43(1):1429–1436CrossRefGoogle Scholar
  4. 4.
    Chen X, Cao F, Zhang H, Yu G, Wang G, Dong X, Gu Y, He H, Liu Y (2012) Dynamic hysteresis and scaling behavior of energy density in Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]O3. J Am Ceram Soc 95(4):1163–1166CrossRefGoogle Scholar
  5. 5.
    Jiang S, Zhang L, Zhang G, Liu S, Yi J, Xiong X, Yu Y, He J, Zeng Y (2013) Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties. Ceram Int 39(5):5571–5575CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Cao M, Yao Z, Wang Z, Song Z, Ullah A, Hao H, Liu H (2015) Effects of silica coating on the microstructures and energy storage properties of BaTiO3 ceramics. Mater Res Bull 67:70–76CrossRefGoogle Scholar
  7. 7.
    Kang WS, Koh JH (2015) (1 − x)Bi0.5Na0.5TiO3xBaTiO3 lead-free piezoelectric ceramics for energy-harvesting applications. J Eur Ceram Soc 35:2057–2064CrossRefGoogle Scholar
  8. 8.
    Cho JH, Jeong YH, Nam JH, Yun JS, Park YJ (2014) Phase transition and piezoelectric properties of lead-free (Bi1/2Na1/2)TiO3–BaTiO3 ceramics. Ceram Int 40:8419–8425CrossRefGoogle Scholar
  9. 9.
    Chen CS, Tu CS, Chen PY, Ting Y, Chiu SJ, Hung CM, Lee HY, Wang SF, Anthoninappen J, Schmidt VH, Chien RR (2014) Dielectric properties in lead-free piezoelectric (Bi0.5Na0.5)TiO3–BaTiO3 single crystals and ceramics. J Cryst Growth 393:129–133CrossRefGoogle Scholar
  10. 10.
    Hamza L, Brahim L, Bl Mokhtar, Mohamed R, Med AH, Hamadi K (2015) XRD, Raman and electrical studies on the (1 − x)(Na0.5Bi0.5)TiO3xBaTiO3 lead free ceramics. J Alloy Compd 618:643–648CrossRefGoogle Scholar
  11. 11.
    Chandrasekhar M, Kumar P (2015) Synthesis and characterizations of BNT–BT and BNT–BT–KNN ceramics for actuator and energy storage applications. Ceram Int 41:5574–5580CrossRefGoogle Scholar
  12. 12.
    Chaouchi A, Kennour S, Astorg S, Rguiti M, Courtois C, Marinel S, Aliouat M (2011) Characterization of sol–gel synthesised lead-free (1 − x)Na0.5Bi0.5TiO3xBaTiO3-based ceramics. J Alloy Compd 509(37):9138–9143CrossRefGoogle Scholar
  13. 13.
    Jin C, Wang F, Wei L, Tang J, Li Y, Yao Q, Tian CY, Shi WZ (2014) Influence of B-site complex-ion substitution on the structure and electrical properties in Bi0.5Na0.5TiO3-based lead-free solid solutions. J Alloy Compd 585:185–191CrossRefGoogle Scholar
  14. 14.
    Zhou C, Liu X, Li W, Yuan C (2009) Dielectric and piezoelectric properties of Y2O3 doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free piezoelectric ceramics. Mater Res Bull 44:724–727CrossRefGoogle Scholar
  15. 15.
    Chen P, Chen C, Tu C, Cheng C, Cherng J (2014) Relaxor effect on electric field induced large strain in (1 − x)(Bi0.5Na0.5)TiO3xBaTiO3 lead-free piezoceramics. Ceram Int 40(4):6137–6142CrossRefGoogle Scholar
  16. 16.
    Chen M, Xu Q, Chen W, Liu H, Kim BH, Ahn BK (2007) Structure, piezoelectric and ferroelectric properties of La2O3 added (Na0.5Bi0.5)0.93Ba0.07TiO3 lead-free ceramics. Ferroelectrics 358:123–128CrossRefGoogle Scholar
  17. 17.
    Thanaboonsombut A, Vaneesorn N (2008) Effect of attrition milling on the piezoelectric properties of Bi0.5Na0.5TiO3-based ceramics. J Electroceram 21:414–417CrossRefGoogle Scholar
  18. 18.
    Li Q, Wang J, Ma L, Fan H, Li Z (2016) Large electrocaloric effect in (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ferroelectric ceramics by La2O3 addition. Mater Res Bull 74:57–61CrossRefGoogle Scholar
  19. 19.
    Panda PK (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44:5049–5062. doi: 10.1007/s10853-009-3643-0 CrossRefGoogle Scholar
  20. 20.
    Pu Y, Yao M, Liu H, Frömling Till (2016) Phase transition behavior, dielectric and ferroelectric properties of (1 − x)(Bi0.5Na0.5)TiO3xBa0.85Ca0.15Ti0.9Zr0.1O3 ceramics. J Eur Ceram Soc 36:2461–2468CrossRefGoogle Scholar
  21. 21.
    Fu P, Xu Z, Chu R, Li W, Zang G, Hao J (2010) Piezoelectric, ferroelectric and dielectric properties of Sm2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics. Mater Chem Phys 124:1065–1070CrossRefGoogle Scholar
  22. 22.
    Fu P, Xu Z, Chu R, Li W, Xie Q, Zhang Y, Chen Q (2010) Effect of Dy2O3 on the structure and electrical properties of (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free piezoelectric ceramics. J Alloy Compd 508:546–553CrossRefGoogle Scholar
  23. 23.
    Chi ML, Xiao WX, Kwok KW (2015) Photoluminescence, ferroelectric, dielectric and piezoelectric properties of Er-doped BNT–BT multifunctional ceramics. Appl Surf Sci 336:314–320CrossRefGoogle Scholar
  24. 24.
    Fancher Chris M, Blendell John E, Bowman Keith J (2013) Poling effect on d 33 in textured Bi0.5Na0.5TiO3-based materials. Scr Mater 68:443–446CrossRefGoogle Scholar
  25. 25.
    Ding J, Liu Y, Lu Y, Qian H, Gao H, Chen H, Ma C (2014) Enhanced energy-storage properties of 0.89Bi0.5Na0.5TiO3–0.06BaTiO3–0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics by two-step sintering method. Mater Lett 114:107–110CrossRefGoogle Scholar
  26. 26.
    Song Z, Liu H, Zhang S, Wang Z, Shi Y, Hao H, Cao M, Yao Z, Yu Z (2014) Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J Eur Ceram Soc 34(5):1209–1217CrossRefGoogle Scholar
  27. 27.
    Yan H, Inam F, Viola G, Ning H, Zhang H, Jiang Q, Zeng T, Gao Z, Reece MJ (2011) The contribution of electrical conductivity, dielectric permittivity and domain switching in ferroelectric hysteresis loops. J Adv Dielectr 1(1):107–118CrossRefGoogle Scholar
  28. 28.
    Viola G, McKinnon R, Koval V, Adomkevicius A, Dunn S, Yan H (2014) Lithium-induced phase transitions in lead-free Bi0.5Na0.5TiO3 based ceramics. J Phys Chem C 118:8564–8570CrossRefGoogle Scholar
  29. 29.
    Viola G, Ning G, Wei X, Deluca M, Adomkevicius A, Khaliq J, Reece MJ, Yan H (2013) Dielectric relaxation, lattice dynamics and polarization mechanisms in Bi0.5Na0.5TiO3-based lead-free ceramics. J Appl Phys 114:014107-1–014107-9CrossRefGoogle Scholar
  30. 30.
    Tai CW, Choy SH, Chan HLW (2008) Ferroelectric domain morphology evolution and octahedral tilting in lead-free (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(Bi1/2Li1/2)TiO3–BaTiO3 ceramics at different temperatures. J Am Ceram Soc 91(10):3335–3341CrossRefGoogle Scholar
  31. 31.
    Schmitt LA, Hinterstein M, Kleebe H, Fuess H (2010) Comparative study of two lead-free piezoceramics using diffraction techniques. J Appl Cryst 43:805–810CrossRefGoogle Scholar
  32. 32.
    Zannen M, Lahmar A, Khemakhem H, Marssi ME (2016) Energy storage property in lead free gd doped Na1/2Bi1/2TiO3 ceramics. Solid State Commun 245:1–4CrossRefGoogle Scholar
  33. 33.
    Xu B, Moses P, Pai NG, Cross LE (1998) Charge release of lanthanum-doped lead zirconate titanate stannate antiferroelectric thin films. Appl Phys Lett 72(5):593–595CrossRefGoogle Scholar
  34. 34.
    Kitanaka Y, Ogino M, Hirano K, Noguchi Y, Miyayama M, Kagawa Y, Moriyoshi C, Kuroiwa Y, Torii S, Kamiyama T (2013) Crystal structural analyses of ferroelectric tetragonal (Bi1/2Na1/2)TiO3–7%BaTiO3 powders and single crystals. Jpn J Appl Phys 52:09KD01-1–09KD01-5CrossRefGoogle Scholar
  35. 35.
    Jo W, Schaab S, Sapper E, Schmitt LA, Kleebe H, Bell AJ, Rodel J (2011) On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3–6 mol%BaTiO3. J Appl Phys 110:074106-1–074106-9CrossRefGoogle Scholar
  36. 36.
    Song J, Chen G (2014) Dielectric behavior and energy storage properties in BaO–SrO–Nb2O5–B2O3 system glass-ceramics with Gd2O3 addition. J Mater Sci: Mater Electron 25:349–354Google Scholar
  37. 37.
    Ma M, Tan X, Dulkin E, Roth M (2010) Domain structure-dielectric property relationship in lead-free (1 − x)Bi1/2Na1/2TiO3xBaTiO3 ceramics. J Appl Phys 108:104105-1–104105-8Google Scholar
  38. 38.
    Tan XL, Ma C, Frederick J, Beckman S, Webber KG (2011) The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J Am Ceram Soc 94(12):4091–4107CrossRefGoogle Scholar
  39. 39.
    Bai W, Xi J, Zhang J, Shen B, Zhai J, Yan H (2015) Effect of different templates on structure evolution and large strain response under a low electric field in <001>-textured lead-free BNT-based piezoelectric ceramics. J Eur Ceram Soc 35:2489–2499CrossRefGoogle Scholar
  40. 40.
    Liu L, Huang Y, Li Y, Wu M, Fang L, Hu C, Wang Y (2012) Oxygen-vacancy-related high-temperature dielectric relaxation and electrical conduction in 0.95K0.5Na0.5NbO3–0.05BaZrO3 ceramic. Physica B 407(1):136–139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jiwen Xu
    • 1
  • Xiaopeng Lu
    • 1
  • Ling Yang
    • 1
  • Changrong Zhou
    • 1
  • Yangyang Zhao
    • 1
  • Haibo Zhang
    • 2
  • Xiaowen Zhang
    • 1
  • Wei Qiu
    • 1
  • Hua Wang
    • 1
    Email author
  1. 1.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China
  2. 2.College of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations