Journal of Materials Science

, Volume 52, Issue 17, pp 10038–10046 | Cite as

High-temperature thermal conductivity of biomorphic SiC/Si ceramics

  • J. Ramírez-Rico
  • M. Singh
  • D. Zhu
  • J. Martínez-Fernández
Ceramics

Abstract

Thermal conductivity of biomorphic SiC/Si, a silicon carbide + silicon containing two phase material, was evaluated using the laser steady-state heat flux method. These materials were processed via silicon melt infiltration of wood-derived carbon scaffolds. In this approach, heat flux was measured through the thickness when one side of the specimen was heated with a 10.6-µm CO2 laser. A thin mullite layer was applied to the heated surface to ensure absorption and minimize reflection losses, as well as to ensure a consistent emissivity to facilitate radiative loss corrections. The influence of the mullite layer was accounted for in the thermal conductivity calculations. The effect of microstructure and composition (inherited from the wood carbonaceous performs) on measured conductivity was evaluated. To establish a baseline for comparison, a dense, commercially available sintered SiC ceramic was also evaluated. It was observed that at a given temperature, thermal conductivity falls between that of single-crystal silicon and fine-grained polycrystalline SiC and can be rationalized in terms of the SiC volume fraction in biomorphic SiC/Si material.

Notes

Acknowledgements

Part of this work was funded by the Spanish MINECO under Grants MAT2013-41233-R and MAT2016-76526-R, partially funded by FEDER. Electron microscopy measurements were performed at the CITIUS central services of the University of Seville.

References

  1. 1.
    Greil P, Lifka T, Kaindl A (1998) Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure. J Eur Ceram Soc 18:1961–1973CrossRefGoogle Scholar
  2. 2.
    de Arellano-Lopez AR, Martinez-Fernandez J, Gonzalez P, Dominguez C, Fernandez-Quero V, Singh M (2004) Biomorphic SiC: a new engineering ceramic material. Int J Appl Ceram Technol 1:56–67CrossRefGoogle Scholar
  3. 3.
    Varela-Feria FM, Ramirez-Rico J, de Arellano-Lopez AR, Martinez-Fernandez J, Singh M (2008) Reaction-formation mechanisms and microstructure evolution of biomorphic SiC. J Mater Sci 43:933–941. doi: 10.1007/s10853-007-2207-4 CrossRefGoogle Scholar
  4. 4.
    Singh M (2002) Ecoceramics: ceramics from wood. Adv Mater Process 160:39–41Google Scholar
  5. 5.
    Singh M, Martinez-Fernandez J, de Arellano-Lopez AR (2003) Environmentally conscious ceramics (ecoceramics) from natural wood precursors. Curr Opin Solid State Mater Sci 7:247–254CrossRefGoogle Scholar
  6. 6.
    Singh M, Yee BM (2004) Reactive processing of environmentally conscious, biomorphic ceramics from natural wood precursors. J Eur Ceram Soc 24:209–217CrossRefGoogle Scholar
  7. 7.
    Torres-Raya C, Hernandez-Maldonado D, Ramirez-Rico J, Garcia-Ganan C, de Arellano-Lopez AR, Martinez-Fernandez J (2008) Fabrication, chemical etching, and compressive strength of porous biomimetic SiC for medical implants. J Mater Res 23:3247–3254CrossRefGoogle Scholar
  8. 8.
    Wilkes TE, Young ML, Sepulveda RE, Dunand DC, Faber KT (2006) Composites by aluminum infiltration of porous silicon carbide derived from wood precursors. Scr Mater 55:1083–1086CrossRefGoogle Scholar
  9. 9.
    Pappacena KE, Johnson MT, Xie S, Faber KT (2010) Processing of wood-derived copper–silicon carbide composites via electrodeposition. Compos Sci Technol 70:485–491CrossRefGoogle Scholar
  10. 10.
    Arzac GM, Ramirez-Rico J, Gutierrez-Pardo A, de Haro MCJ, Hufschmidt D, Martinez-Fernandez J, Fernandez A (2016) Monolithic supports based on biomorphic SiC for the catalytic combustion of hydrogen. RSC Adv 6:66373–66384CrossRefGoogle Scholar
  11. 11.
    Wang Q, Sun WZ, Jin GQ, Wang YY, Guo XY (2008) Biomorphic SiC pellets as catalyst support for partial oxidation of methane to syngas. Appl Catal B Environ 79:307–312CrossRefGoogle Scholar
  12. 12.
    Church TL, Fallani S, Liu J, Zhao M, Harris AT (2012) Novel biomorphic Ni/SiC catalysts that enhance cellulose conversion to hydrogen. Catal Today 190:98–106CrossRefGoogle Scholar
  13. 13.
    Alonso-Farinas B, Lupion M, Rodriguez-Galan M, Martinez-Fernandez J (2013) New candle prototype for hot gas filtration industrial applications. Fuel 114:120–127CrossRefGoogle Scholar
  14. 14.
    Gomez-Martin A, Orihuela MP, Becerra JA, Martinez-Fernandez J, Ramirez-Rico J (2016) Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters. Mater Des 107:450–460CrossRefGoogle Scholar
  15. 15.
    Filardo G, Kon E, Tampieri A, Cabezas-Rodriguez R, Di Martino A, Fini M, Giavaresi G, Lelli M, Martinez-Fernandez J, Martini L, Ramirez-Rico J, Salamanna F, Sandri M, Sprio S, Marcacci M (2014) New bio-ceramization processes applied to vegetable hierarchical structures for bone regeneration: an experimental model in sheep. Tissue Eng A 20:763–773Google Scholar
  16. 16.
    Gryshkov O, Klyui NI, Temchenko VP, Kyselov VS, Chatterjee A, Belyaev AE, Lauterboeck L, Iarmolenko D, Glasmacher B (2016) Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants. Mater Sci Eng C Mater Biol Appl 68:143–152CrossRefGoogle Scholar
  17. 17.
    Pappacena KE, Faber KT, Wang H, Porter WD (2007) Thermal conductivity of porous silicon carbide derived from wood precursors. J Am Ceram Soc 90:2855–2862CrossRefGoogle Scholar
  18. 18.
    Pappacena KE, Johnson MT, Wang H, Porter WD, Faber KT (2010) Thermal properties of wood-derived copper–silicon carbide composites fabricated via electrodeposition. Compos Sci Technol 70:478–484CrossRefGoogle Scholar
  19. 19.
    Behrens E (1968) Thermal conductivities of composite materials. J Compos Mater 2:2–17CrossRefGoogle Scholar
  20. 20.
    Gomez-Martin A, Orihuela MP, Ramirez-Rico J, Chacartegui R, Martinez-Fernandez J (2016) Thermal conductivity of porous biomorphic SiC derived from wood precursors. Ceram Int 42:16220–16229CrossRefGoogle Scholar
  21. 21.
    Parfen’eva LS, Orlova TS, Kartenko NF, Sharenkova NV, Smirnov BI, Smirnov IA, Misiorek H, Jezowski A, Varela-Feria FM, Martinez-Fernandez J, de Arellano-Lopez AR (2005) Thermal conductivity of the SiC/Si biomorphic composite, a new cellular ecoceramic. Phys Solid State 47:1216–1220CrossRefGoogle Scholar
  22. 22.
    Parfen’eva LS, Orlova TS, Smirnov BI, Smirnov IA, Misiorek H, Mucha J, Jezowski A, de Arellano-Lopez AR, Martinez-Fernandez J, Varela-Feria FM (2006) Anisotropy of the thermal conductivity and electrical resistivity of the SiC/Si biomorphic composite based on a white-eucalyptus biocarbon template. Phys Solid State 48:2281–2288CrossRefGoogle Scholar
  23. 23.
    Parfen’eva LS, Smirnov BI, Smirnov IA, Misiorek H, Mucha J, Jezowski A, de Arellano-Lopez AR, Martinez-Fernandez J, Sepulveda R (2007) Thermal conductivity of bio-SiC and the Si embedded in cellular pores of the SiC/Si biomorphic composite. Phys Solid State 49:211–214CrossRefGoogle Scholar
  24. 24.
    Parfen’eva L, Orlova T, Kartenko N, Sharenkova N, Smirnov B, Smirnov I, Misiorek H, Jezowski A, Wilkes T, Faber K (2008) Thermal conductivity of high-porosity biocarbon precursors of white pine wood. Phys Solid State 50:2245–2255CrossRefGoogle Scholar
  25. 25.
    Parfen’eva LS, Orlova TS, Smirnov BI, Smirnov IA, Misiorek H, Mucha J, Jezowski A, Cabezas-Rodriguez R, Ramirez-Rico J (2012) Thermal conductivity of high-porosity heavily doped biomorphic silicon carbide prepared from sapele wood biocarbon. Phys Solid State 54:1732–1739CrossRefGoogle Scholar
  26. 26.
    Zhu DM, Miller RA, Nagaraj BA, Bruce RW (2001) Thermal conductivity of EB-PVD thermal barrier coatings evaluated by a steady-state laser heat flow technique. Surf Coat Technol 138:1–8CrossRefGoogle Scholar
  27. 27.
    Zhu DM, Bansal NP, Lee KN, Miller RA (2001) Current status of environmental barrier coatings for Si-based ceramics. In: Krenkel W, Naslain R, Schneider H (eds) High temperature ceramic matrix composites. Wiley-VCH, WeinheimGoogle Scholar
  28. 28.
    Zhu DM, Miller RA (2005) Thermal conductivity. DESTech Publications, LancasterGoogle Scholar
  29. 29.
    Bauer W, Moldenhauer A, Platzer A (2005) Emissivities of ceramic materials for high temperature processes. In: Optics and photonics. International Society for Optics and PhotonicsGoogle Scholar
  30. 30.
    Baukal CE Jr. (2000) Heat transfer in industrial combustion. CRC Press, Boca RatonCrossRefGoogle Scholar
  31. 31.
    Touloukian YS, DeWitt D (1972) DTIC DocumentGoogle Scholar
  32. 32.
    Burzo MG, Komarov PL, Raad PE (2003) Thermal transport properties of gold-covered thin-film silicon dioxide. IEEE Trans Compon Packag Technol 26:80–88CrossRefGoogle Scholar
  33. 33.
    Collins AK, Pickering MA, Taylor RL (1990) Grain-size dependence of the thermal-conductivity of polycrystalline chemical vapor-deposited beta-sic at low-temperatures. J Appl Phys 68:6510–6512CrossRefGoogle Scholar
  34. 34.
    Liu DM, Lin BW (1996) Thermal conductivity in hot-pressed silicon carbide. Ceram Int 22:407–414CrossRefGoogle Scholar
  35. 35.
    Pickering MA, Taylor RL, Keeley JT, Graves GA (1990) Chemically vapor-deposited silicon-carbide (SiC) for optical applications. Nucl Instrum Methods A 291:95–100CrossRefGoogle Scholar
  36. 36.
    Price RJ (1973) Thermal-conductivity of neutron-irradiated pyrolytic beta-silicon carbide. J Nucl Mater 46:268–272CrossRefGoogle Scholar
  37. 37.
    Rohde M (1991) Reduction of the thermal-conductivity of SiC by radiation-damage. J Nucl Mater 182:87–92CrossRefGoogle Scholar
  38. 38.
    Senor DJ, Youngblood GE, Moore CE, Trimble DJ, Newsome GA, Woods JJ (1996) Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics. Fusion Technol 30:943–955Google Scholar
  39. 39.
    Sigl LS (2003) Thermal conductivity of liquid phase sintered silicon carbide. J Eur Ceram Soc 23:1115–1122CrossRefGoogle Scholar
  40. 40.
    Slack GA (1964) Thermal conductivity of pure and impure silicon, silicon carbide and diamond. J Appl Phys 35:3460–3466CrossRefGoogle Scholar
  41. 41.
    Snead LL, Nozawa T, Katoh Y, Byun TS, Kondo S, Petti DA (2007) Handbook of SiC properties for fuel performance modeling. J Nucl Mater 371:329–377CrossRefGoogle Scholar
  42. 42.
    Glassbrenner CJ, Slack GA (1964) Thermal conductivity of silicon + germanium from 3 degrees K to melting point. Phys Rev A Gen Phys 134:1058–1069CrossRefGoogle Scholar
  43. 43.
    Shanks HR, Sidles PH, Maycock PD, Danielson GC (1963) Thermal conductivity of silicon from 300 to 1400 degrees K. Phys Rev 130:1743–1748CrossRefGoogle Scholar
  44. 44.
    Shelykh AI, Smirnov BI, Orlova TS, Smirnov IA, de Arellano-Lopez AR, Martinez-Fernandez J, Varela-Feria FM (2006) Electrical and thermoelectric properties of the SiC/Si biomorphic composite at high temperatures. Phys Solid State 48:229–232CrossRefGoogle Scholar
  45. 45.
    Orlova TS, Smirnov BI, de Arellano-Lopez AR, Fernandez JM, Sepulveda R (2005) Anisotropy of electric resistivity of Sapele-boased biomorphic SiC/Si composites. Phys Solid State 47:229–232CrossRefGoogle Scholar
  46. 46.
    Orlova TS, Il’in DV, Smirnov BI, Smirnov IA, Sepulveda R, Martinez-Fernandez J, de Arellano-Lopez AR (2007) Electrical properties of bio-SiC and Si components of the SiC/Si biomorphic composite. Phys Solid State 49:205–210CrossRefGoogle Scholar
  47. 47.
    Popov VV, Orlova TS, Ramirez-Rico J, de Arellano-Lopez AR, Martinez-Fernandez J (2008) Electrical properties of the SiC/Si composite and the biomorphic SiC ceramic fabricated from Spanish beech wood. Phys Solid State 50:1819–1825CrossRefGoogle Scholar
  48. 48.
    Orlova TS, Popov VV, Cancapa JQ, Maldonado DH, Magarino EE, Feria FMV, de Arellano AR, Fernandez JM (2011) Electrical properties of biomorphic SiC ceramics and SiC/Si composites fabricated from medium density fiberboard. J Eur Ceram Soc 31:1317–1323CrossRefGoogle Scholar
  49. 49.
    Srinivasan M, Seshadri S, Weber G (1980) Evaluation of slow crack growth parameters for silicon carbide ceramics. In: 82nd annual meeting of the American Ceramic Society, Chicago, IL, Carborundum Publication No. A-12Google Scholar
  50. 50.
    Fernandez JM, Munoz A, Lopez ARD, Feria FMV, Dominguez-Rodriguez A, Singh M (2003) Microstructure-mechanical properties correlation in siliconized silicon carbide ceramics. Acta Mater 51:3259–3275CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Dpto. Física de la Materia Condensada, Instituto de Ciencia de Materiales de Sevilla (ICMS)Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC)SevilleSpain
  2. 2.Ohio Aerospace InstituteClevelandUSA
  3. 3.NASA Glenn Research CenterClevelandUSA

Personalised recommendations