Journal of Materials Science

, Volume 52, Issue 18, pp 10927–10937 | Cite as

Novel single-phase full-color emitting Ba9Lu2Si6O24:Ce3+/Mn2+/Tb3+ phosphors for white LED applications

  • Sayed Ali Khan
  • Zhong Hao
  • Hu Wei-Wei
  • Lu-Yuan Hao
  • Xin Xu
  • Noor Zamin Khan
  • Simeon Agathopoulos
Energy materials


Novel single-phase full-color-emitting Ba9Lu2Si6O24:Ce3+/Mn2+/Tb3+ phosphors were successfully synthesized by a high-temperature solid-state reaction method. Analysis of the X-ray diffractograms of the produced phosphors suggests that all the luminescence doping cations preferably occupy the Ba2+ sites in the host lattice. Li+ were used according to Ce3+ and Tb3+ concentration as a charge compensation regent. Under UV excitation, the single Ce3+-doped phosphor exhibits an intense blue emission band that peaks at 424 nm. In the co-doped phosphors, the experimental results suggest that an efficient energy transfer mechanism from Ce3+ to Tb3+ and Mn2+ results in the generation of a green emission in the Tb3+-doped phosphors and a red emission in the Mn2+-doped ones. The triple-doped phosphors, which contained specific concentrations of Ce3+, Mn2+, and Tb3+ ions, generated a tunable (in a wide range) white light which had good color rendering index values. Thermal behavior of the present phosphors was investigated which shows better characteristics. This result qualifies the produced powders as potential single-phase trichromatic white light-emitting phosphors.



This research was supported by the National Science Foundation of China (Nos. 51372238, 11435012), the CNPC-CAS strategic cooperation research program (2015A-4812), and the provincial teaching research project of Anhui province (2014jyxm010). Funding was provided by National Natural Science Foundation of China (CN) (Grant No. 11179037), and National Basic Research Program of China (Grant No. 973 Program, 2012CB922004).


  1. 1.
    Nakamura S, Fasol G (1996) The blue laser diode GaN based light emitters and laser. Springer, Berlin, pp 35–64Google Scholar
  2. 2.
    Nakamura S (2009) Current status of GaN based solid state lighting. Mater Res Soc Bull 34:101–107CrossRefGoogle Scholar
  3. 3.
    Tang TY, Xie WJ, Huang K, Hao LY, Xu X, Xie RJ (2011) A high stable blue BaSi3Al3O4N5:Eu2+ phosphor for white LEDs and display applications electrochem. Solid State Lett 14:J445–J447Google Scholar
  4. 4.
    Batentschuk M, Osvet A, Schierning G, Klier A, Schneider J, Winnacker A (2004) Simultaneous excitation of Ce3+ and Eu3+ ions in Tb3Al5O12. Radiat Meas 38:539–543CrossRefGoogle Scholar
  5. 5.
    Jang HS, Won YH, Jeon DY (2009) Improvement of electroluminescent property of blue LED coated with highly luminescent yellow emitting phosphors. Appl Phys B 95:715–720CrossRefGoogle Scholar
  6. 6.
    Setlur AA, Heward WJ, Gao Y, Srivastava AM, Chandran RG, Shankar MV (2006) Crystal chemistry and luminescence of Ce3+ doped Lu2CaMg2(Si, Ge)3O12 and Its use in LED based lighting. Chem Mater 18:3314–3322CrossRefGoogle Scholar
  7. 7.
    Yamada M, Naitou T, Izuno K, Tamaki H, Murazaki Y, Kameshima M, Mukai T (2003) Red enhanced white light emitting diode using a new red phosphor. Jpn J Appl Phys 42:L20–L25CrossRefGoogle Scholar
  8. 8.
    Li X, Budai J, Liu F, Howe J, Zhang J, Wang X, Gu Z, Sun C, Meltzer R, Pan Z (2013) New yellow Ba0.93Eu0.07Al2O4 phosphor for warm white light emitting diodes through single emitting center conversion. Light Sci Appl 2:1–8Google Scholar
  9. 9.
    Hao ZD, Zhang JH, Zhang X, Sun XY, Luo YS, Lu SZ, Wang XJ (2007) White light emitting diode by using α-Ca2P2O7: Eu2+, Mn2+ phosphor. Appl Phys Lett 90:261113-1–261113-3Google Scholar
  10. 10.
    Kim JS, Jeon PE, Park YH, Choi JC, Park HL, Kim GC, Kim TW (2004) White light generation through ultraviolet emitting diode and white emitting phosphor. Appl Phys Lett 85:3696–3698CrossRefGoogle Scholar
  11. 11.
    Yang WJ, Chen TM (2007) Ce3+/Eu2+co-doped Ba2ZnS3: a blue radiation converting phosphor for white light emitting diodes. Appl Phys Lett 90:171908-1–171908-3Google Scholar
  12. 12.
    Kido J, Shionoya H, Nagai K (1995) Single layer white light emitting organic electroluminescent devices based on dye dispersed poly. Appl Phys Lett 67:2281–2283CrossRefGoogle Scholar
  13. 13.
    Piao XQ, Horikawa T, Hanzawa H, Machida K (2006) Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light emitting diode illumination. Appl Phys Lett 88:161908-1–161908-3CrossRefGoogle Scholar
  14. 14.
    Xia Z, Liu Q (2016) Progress in discovery and structural design of color conversion phosphors for LEDs. Progress Mater Sci 84:59–117CrossRefGoogle Scholar
  15. 15.
    Gautier R, Li X, Xia Z, Massuyeau F (2017) Two-step design of a single-doped white phosphor with high color rendering. JACS 139:1436–1439CrossRefGoogle Scholar
  16. 16.
    Dai PP, Li C, Zhang XT, Xu J, Chen X, Wang XL, Jia Y, Wang X, Liu YC (2016) A single Eu2+ activated high color rendering oxychloride white light phosphor for white-light emitting diodes. Light Sci Appl 5:1–9CrossRefGoogle Scholar
  17. 17.
    Chen M, Xia Z, Maxim S, Molokeev Wang T, Liu Q (2017) Tuning of photoluminescence and local structures of substituted cations in xSr2Ca(PO4)2 − (1 − x)Ca10Li(PO4)7: Eu2+ phosphors. Chem Mater 29:1430–1438CrossRefGoogle Scholar
  18. 18.
    Wang L, Noh HM, Moon BK, Park SH, Jeong JH, Shi J (2014) Simultaneous realization of two approaches to white light in single-component phosphors. Opt Express 22:25500–25505CrossRefGoogle Scholar
  19. 19.
    Vishwakarma AK, Jha K, Jayasimhadri M, Sivaiah B, Gahtori B, Haranath D (2015) Emerging cool white light emission from Dy3+ doped single phase alkaline earth niobate phosphors for indoor lighting applications. Dalton Trans 44:17166–17174CrossRefGoogle Scholar
  20. 20.
    Li X, Budai JD, Liu F, Howe FJ, Zhang J, Wang XJ, Gu Z, Sun C, Meltzer RS, Pan Z (2013) New yellow Ba0.93Eu0.07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion. Light Sci Appl 2:1–8Google Scholar
  21. 21.
    Wang MS, Guo SP, Li Y, Cai LZ, Zou JP, Xu G, Zhou WW, Zheng FK, Guo GC (2009) A direct white light emitting metal organic framework with tunable yellow to white photoluminescence by variation of excitation Light. JACS Commun 131:13572–13573CrossRefGoogle Scholar
  22. 22.
    Ci Z, Sun Q, Qin S, Sun M, Jiang X, Zhang X, Wang Y (2014) Warm white light generation from a single phase Dy3+ doped Mg2Al4Si5O18 phosphor for white UV-LEDs. J Chem Phys 16:11597–11602Google Scholar
  23. 23.
    Yang LX, Xu X, Hao LY, Yang XF, Agathopoulos S (2012) Synthesis and characterization of fast-decaying bluish green phosphors of Tb3+-doped CaSi2O2N2 for 2D/3D plasma display panels. Luminescence 132:1540–1543CrossRefGoogle Scholar
  24. 24.
    Shi L, Huang YL, Seo HJ (2010) Emission red shift and unusual band narrowing of Mn2+ in NaCaPO4 phosphor. Phys Chem A 114:6927–6934CrossRefGoogle Scholar
  25. 25.
    Kim JS, Jeon PE, Choi JC, Park HL, Mho SI, Kim GS (2004) Warm white light emitting diode utilizing a single phase full color Ba3MgSi2O8: Eu2+, Mn2+ phosphor. Appl Phys Lett 84:2931–2933CrossRefGoogle Scholar
  26. 26.
    Chang CK, Chen TM (2007) Sr3B2O6:Ce3+, Eu2+, A potential single phased white emitting borate phosphor for ultraviolet light emitting diodes. Appl Phys Lett 91:081902-1–081902-3Google Scholar
  27. 27.
    Zhang X, Qiao X, Seo HJ (2011) Luminescence properties of novel Ce3+, Mn2+ doped NaSr4(BO3)3 phosphors. Curr Appl Phys 11:442–446CrossRefGoogle Scholar
  28. 28.
    Zhang Y, Li G, Geng D, Shang M, Peng C, Lin J (2012) Color tunable emission and energy transfer in Ca3Gd7(PO4)(SiO4)5O2: Ce3+/Tb3+/Mn2+ phosphors. Inorg Chem 51:11655–11666CrossRefGoogle Scholar
  29. 29.
    Lv W, Hao Z, Zhang X, Luo Y, Wang Z, Zhang J (2011) Tunable full color emitting BaMg2Al6Si9O30:Eu2+, Tb3+, Mn2+ phosphors based on energy transfer. Inorg Chem 50:7846–7851CrossRefGoogle Scholar
  30. 30.
    Huang CH, Chan TS, Liu WR, Wang DY, Chiu YC, Yeh YT, Chen TM (2012) Crystal structure of blue white yellow color tunable Ca4Si2O7F2:Eu2+, Mn2+ phosphor and investigation of color tunability through energy transfer for single phase white light near ultraviolet LEDs. Mater Chem 22:20210–20216CrossRefGoogle Scholar
  31. 31.
    Liu WR, Chiu YC, Yeh YT, Jang SM, Chen TM (2009) Luminescence and energy transfer mechanism in Ca10K(PO4)7:Eu2+, Mn2+ phosphor. Electrochem Soc 156:J165–J168CrossRefGoogle Scholar
  32. 32.
    Huang CH, Luo L, Chen TM (2011) An investigation on the luminescence and Ce3+ → Eu2+ energy transfer in Ca9Y(PO4)7:Ce3+, Eu2+ phosphor. Electrochem Soc 158:J341–J344CrossRefGoogle Scholar
  33. 33.
    Huang CH, Kuo TW, Chen TM (2010) Novel red emitting phosphor Ca9Y(PO4)7:Ce3+, Mn2+ with energy transfer for fluorescent lamp application. ACS Appl Mater Interfaces 2:1395–1399CrossRefGoogle Scholar
  34. 34.
    JieXie W, Tang JY, Hao LY, Xu X (2009) Blue and red luminescence from Mn2+–Ce3+ co-doped MgYSi2O5N phosphors. Opt Mater 32:274–276CrossRefGoogle Scholar
  35. 35.
    Nakano T, Kawakami Y, Uematsu K, Ishigaki T, Toda K, Sato M (2009) Novel Ba–Sc–Si–oxide and oxynitride phosphor for white LED. Luminescence 129:1654–1657CrossRefGoogle Scholar
  36. 36.
    Lee S, Park S (2013) Preparation and luminescent properties of Tb3+ and Tb3+ Ce3+ doped Ba9Y2Si6O24 phosphors. Luminescence 143:215–218CrossRefGoogle Scholar
  37. 37.
    Ji WW, Ye S, Lee MH, Hao LY, Xu X, Agathopoulos S, Zheng D, Fang C, Huang Y (2016) Influence of N-anion-doping on the production and the photoluminescence properties of γ-Ca2SiO4:Ce3+ phosphors and the β → γ phase transformation. Mater Chem C 4:3313–3320CrossRefGoogle Scholar
  38. 38.
    Toda K, Kawakami Y, Kousaka SI, Ito Y, Komeno A, Usematsu K, Sato M (2006) New silicate phosphors. IEICS Trans Electron 89:1406–1412CrossRefGoogle Scholar
  39. 39.
    Huang CH, Liu WR, Kuo TW, Chen TM (2011) A study on the luminescence and energy transfer of green-emitting Ca9Y(PO4)7:Ce3+, Tb3+ phosphor for flu-florescent lamp application. Mater Chem 1:9–15Google Scholar
  40. 40.
    Cheng JL, Xu X, Hao LY, Lin Y, Ming LH (2015) Modification of the coordination environment of Eu2+ in Sr2SiO4:Eu2+ phosphors to achieve full color emission. Mater Chem C 3:1567–1575CrossRefGoogle Scholar
  41. 41.
    Zhang X, Liu Y, Lin J, Hao Z, Luo Y, Liu Q, Zhang J (2014) Optical properties and energy transfers of Ce3+ and Mn2+ in Ba9Sc2(SiO4)6. Luminescence 146:321–324CrossRefGoogle Scholar
  42. 42.
    Huang CH, Chen TM (2011) Novel yellow emitting Sr8MgLn(PO4)7:Eu2+ (Ln = Y, La) phosphors for applications in white LEDs with excellent color rendering index. Inorg Chem 50:5725–5730CrossRefGoogle Scholar
  43. 43.
    Dexter DL, Schulman JH (1954) Theory of concentration quenching in inorganic phosphors. Chem Phys 22:1603–1670Google Scholar
  44. 44.
    Brgoch J, Borg CKH, Denault KA, DenBaars SP, Seshadri R (2013) Tuning luminescent properties through solid-solution in (Ba1−xSrx)9Sc2Si6O24:Ce3+, Li+. Solid State Sci 18:149–154CrossRefGoogle Scholar
  45. 45.
    Brgoch J, Borg CKH, Denault KA, Mikhailovsky A, DenBaars SP, Seshadri R (2013) An efficient, thermally stable cerium based silicate phosphor for solid state white lighting. Inorg Chem 52:8010–8016CrossRefGoogle Scholar
  46. 46.
    Song K, Zhang J, Liu Y, Zhang C, Jiang J, Jiang H, Qin HB (2015) Red-emitting phosphor Ba9Lu2Si6O24:Ce3+, Mn2+ with enhanced energy transfer via self charge compensation. Phys Chem 119:24558–24563Google Scholar
  47. 47.
    Kim Y, Park S (2014) Eu2+, Mn2+ co-doped Ba9Y2Si6O24 phosphors based on near-UV-excitable LED lights. Mater Res Bull 49:469–474CrossRefGoogle Scholar
  48. 48.
    Park S (2014) Ce3+–Mn2+ Cooperative Ba9Y2Si6O24 orthosilicate phosphor. Mater Lett 135:59–62CrossRefGoogle Scholar
  49. 49.
    Bian L, Wang T, Yang SL, Liu QL (2015) The crystal structure and luminescence of phosphor Ba9Sc2Si6O24:Eu2+, Mn2+ for white light emitting diode. Mater Res Bull 64:279–282CrossRefGoogle Scholar
  50. 50.
    Reisfeld R, Greenberg E, Velapoldi R, Barnett B (1972) Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them. Chem Phys 56:1698–1705Google Scholar
  51. 51.
    Antipeuko BM, Bataev IM, Ermolaev VL, Lyubimov EI, Privalova TA (1970) Ion to ion radiation less transfer of electron excitation energy between rare earth ions in POCl3–SnCl4. Opt Spectrosc 29:335–338Google Scholar
  52. 52.
    Dexter DL, Schulman JA (1954) Theory of concentration quenching in inorganic phosphors. Chem Phys 22:1063–1070Google Scholar
  53. 53.
    Blasse G (1969) Energy transfers in oxidic-phosphor. Philips Res Rep 24:131Google Scholar
  54. 54.
    Yang WJ, Luo LY, Chen TM, Wang NS (2005) Luminescence and energy transfer of Eu and Mn co-activated CaAl2Si2O8 as a potential phosphor for white light UV–LED. Chem Mater 17:3883–3888CrossRefGoogle Scholar
  55. 55.
    Huang CH, Kuo TW, Chen TM (2010) Novel red emitting phosphor Ca9Y(PO4)7:Ce3+, Mn2+ with energy transfer for fluorescent lamp application. ACS Appl Mater Interface 2:1395–1399CrossRefGoogle Scholar
  56. 56.
    Zhu G, Xin S, Wen Y, Wang Q, Que M, Wang Y (2013) Warm white light generation from a single phased phosphor Sr10[(PO4)5.5(BO4)0.5](BO2):Eu2+, Mn2+, Tb3+ for light emitting diodes. RSC Adv 3:9311–9318CrossRefGoogle Scholar
  57. 57.
    Mothudi BM, Ntwaeaborwa OM, Shreyas Pitale S, Swart HC (2010) Luminescent properties of Ca0.97Al2O4:Eu0.012+, Dy0.023+ phosphors prepared by combustion method at different initiating temperatures. Alloys Compd 508:262–265CrossRefGoogle Scholar
  58. 58.
    Shang M, Li G, Geng D, Yang D, Kang X, Zhang Y, Lian H, Lin J (2012) Blue emitting Ca8La2(PO4)6O2:Ce3+/Eu2+ phosphors with high color purity and brightness for white LED: soft-chemical synthesis, luminescence, and energy transfer properties. Phys Chem C 116:10222–10231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sayed Ali Khan
    • 1
  • Zhong Hao
    • 1
  • Hu Wei-Wei
    • 1
  • Lu-Yuan Hao
    • 1
  • Xin Xu
    • 1
  • Noor Zamin Khan
    • 2
  • Simeon Agathopoulos
    • 3
  1. 1.Chinese Academy of Sciences Key Laboratory of Materials for Energy Conversion, Department of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Key Laboratory of Quantum Information, School of Physical SciencesUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  3. 3.Materials Science and Engineering DepartmentUniversity of IoanninaIoanninaGreece

Personalised recommendations