Advertisement

Journal of Materials Science

, Volume 52, Issue 16, pp 9558–9572 | Cite as

Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement

  • Suhao Li
  • Zheling Li
  • Timothy L. Burnett
  • Thomas J. A. Slater
  • Teruo Hashimoto
  • Robert J. YoungEmail author
Composites

Abstract

The microstructure and mechanisms of reinforcement have been investigated in nanocomposites consisting of graphene nanoplatelets (GNPs) in natural rubber (NR). Nanocomposites with four different loadings of three different sized GNPs were prepared and were bench-marked against nanocomposites loaded with N330 carbon black. The microstructure of the nanocomposites was characterised through a combination of scanning electron microscopy, polarised Raman spectroscopy and X-ray computed tomography (CT), where it was shown that the GNPs were well dispersed with a preferred orientation parallel to the surface of the nanocomposite sheets. The mechanical properties of the nanocomposites were evaluated using tensile testing, and it was shown that, for a given loading, there was a three times greater increase in stiffness for the GNPs than for the carbon black. Stress transfer from the NR to the GNPs was evaluated from stress-induced Raman bands shifts indicating that the effective Young’s modulus of the GNPs in the NR was of the order of 100 MPa, similar to the value evaluated using the rule of mixtures from the stress–strain data.

Keywords

Carbon Black Natural Rubber Orientation Distribution Function Effective Modulus Pristine Graphene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research has been supported by funding from the European Union Seventh Framework Programme under Grant Agreement No. 604391, the Graphene Flagship. The authors would like to acknowledge EPSRC funding of the Henry Moseley X-ray Imaging Facility (EP/F007906; EP/F001452; EP/I02249X), in addition to HEFCE funding through the UK Research Partnership Investment Funding (UKRPIF) Manchester RPIF Round 2 for the Multiscale Characterisation Facility.

Compliance with ethical standards

Conflicts of interest

The authors have no conflicts of interest related to this work.

Supplementary material

10853_2017_1144_MOESM1_ESM.avi (33.8 mb)
Supplementary material 1 (AVI 34626 kb)
10853_2017_1144_MOESM2_ESM.avi (25.2 mb)
Supplementary material 2 (AVI 25754 kb)
10853_2017_1144_MOESM3_ESM.avi (36.1 mb)
Supplementary material 3 (AVI 36937 kb)
10853_2017_1144_MOESM4_ESM.pdf (13.3 mb)
Supplementary material 4 (PDF 13603 kb)

References

  1. 1.
    Donnet JB, Voet A (1976) Carbon black: physics, chemistry and elastomer reinforcement. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Edwards DC (1990) Polymer-filler interactions in rubber reinforcement. J Mater Sci 25:4175–4185. doi: 10.1007/bf00581070 CrossRefGoogle Scholar
  3. 3.
    Boonstra BB (1979) Role of particulate fillers in elastomer reinforcement: a review. Polymer 20:691–704. doi: 10.1016/0032-3861(79)90243-X CrossRefGoogle Scholar
  4. 4.
    Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites–stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115–120. doi: 10.1038/nmat1059 CrossRefGoogle Scholar
  5. 5.
    Leblanc JL (2002) Rubber–filler interactions and rheological properties in filled compounds. Prog Polym Sci 27:627–687. doi: 10.1016/S0079-6700(01)00040-5 CrossRefGoogle Scholar
  6. 6.
    Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63:1647–1654. doi: 10.1016/S0266-3538(03)00066-6 CrossRefGoogle Scholar
  7. 7.
    Donnet JB (2003) Nano and microcomposites of polymers elastomers and their reinforcement. Compos Sci Technol 63:1085–1088. doi: 10.1016/S0266-3538(03)00028-9 CrossRefGoogle Scholar
  8. 8.
    Joly S, Garnaud G, Ollitrault R, Bokobza L, Mark JE (2002) Organically modified layered silicates as reinforcing fillers for natural rubber. Chem Mater 14:4202–4208. doi: 10.1021/cm020093e CrossRefGoogle Scholar
  9. 9.
    Ponnamma D, Sadasivuni KK, Grohens Y, Guo Q, Thomas S (2014) Carbon nanotube based elastomer composites—an approach towards multifunctional materials. J Mater Chem C 2:8446–8485. doi: 10.1039/c4tc01037j CrossRefGoogle Scholar
  10. 10.
    Sherif A, Izzuddin Z, Qingshi M, Nobuyuki K, Andrew M, Hsu-Chiang K, Peter M, Jun M, Liqun Z (2013) Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology 24:165601. doi: 10.1088/0957-4484/24/16/165601 CrossRefGoogle Scholar
  11. 11.
    Basu D, Das A, Stöckelhuber KW, Wagenknecht U, Heinrich G (2014) Advances in layered double hydroxide (LDH)-based elastomer composites. Prog Polym Sci 39:594–626. doi: 10.1016/j.progpolymsci.2013.07.011 CrossRefGoogle Scholar
  12. 12.
    Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi: 10.1126/science.1102896 CrossRefGoogle Scholar
  13. 13.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. doi: 10.1038/nature04233 CrossRefGoogle Scholar
  14. 14.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi: 10.1126/science.1102896 CrossRefGoogle Scholar
  15. 15.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. doi: 10.1126/science.1157996 CrossRefGoogle Scholar
  16. 16.
    Young RJ, Kinloch IA (2013) Graphene and graphene-based nanocomposites. Nanosci-Spec Per Rep 1:145–179. doi: 10.1039/9781849734844-00145 Google Scholar
  17. 17.
    Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Technol 72:1459–1476. doi: 10.1016/j.compscitech.2012.05.005 CrossRefGoogle Scholar
  18. 18.
    Young RJ (2016) Graphene and graphene-based nanocomposites. Cism Courses Lect 563:75–98. doi: 10.1007/978-3-7091-1887-0_4 Google Scholar
  19. 19.
    Young RJ, Liu MF (2016) The microstructure of a graphene-reinforced tennis racquet. J Mater Sci 51:3861–3867. doi: 10.1007/s10853-015-9705-6 CrossRefGoogle Scholar
  20. 20.
    Boland CS, Khan U, Ryan G, Barwich S, Charifou R, Harvey A, Backes C, Li Z, Ferreira MS, Mobius ME, Young RJ, Coleman JN (2016) Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354:1257–1260. doi: 10.1126/science.aag2879 CrossRefGoogle Scholar
  21. 21.
    Papageorgiou DG, Kinloch IA, Young RJ (2016) Hybrid multifunctional graphene/glass-fibre polypropylene composites. Compos Sci Technol 137:44–51. doi: 10.1016/j.compscitech.2016.10.018 CrossRefGoogle Scholar
  22. 22.
    Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450. doi: 10.1021/cm100477v CrossRefGoogle Scholar
  23. 23.
    Araby S, Meng Q, Zhang L, Kang H, Majewski P, Tang Y, Ma J (2014) Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 55:201–210. doi: 10.1016/j.polymer.2013.11.032 CrossRefGoogle Scholar
  24. 24.
    Sadasivuni K, Saiter A, Gautier N, Thomas S, Grohens Y (2013) Effect of molecular interactions on the performance of poly(isobutylene-co-isoprene)/graphene and clay nanocomposites. Colloid Polym Sci 291:1729–1740. doi: 10.1007/s00396-013-2908-y CrossRefGoogle Scholar
  25. 25.
    Chen B, Ma N, Bai X, Zhang H, Zhang Y (2012) Effects of graphene oxide on surface energy, mechanical, damping and thermal properties of ethylene-propylene-diene rubber/petroleum resin blends. RSC Adv 2:4683–4689. doi: 10.1039/c2ra01212j CrossRefGoogle Scholar
  26. 26.
    Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J Mater Chem 22:10464–10468. doi: 10.1039/C2JM31293J CrossRefGoogle Scholar
  27. 27.
    Zhan Y, Wu J, Xia H, Yan N, Fei G, Yuan G (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng 296:590–602. doi: 10.1002/mame.201000358 CrossRefGoogle Scholar
  28. 28.
    Potts JR, Shankar O, Du L, Ruoff RS (2012) Processing–morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055. doi: 10.1021/ma300706k CrossRefGoogle Scholar
  29. 29.
    Scherillo G, Lavorgna M, Buonocore GG, Zhan YH, Xia HS, Mensitieri G, Ambrosio L (2014) Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites. ACS Appl Mater Interfaces 6:2230–2234. doi: 10.1021/am405768m CrossRefGoogle Scholar
  30. 30.
    Potts JR, Shankar O, Murali S, Du L, Ruoff RS (2013) Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber nanocomposites. Compos Sci Technol 74:166–172. doi: 10.1016/j.compscitech.2012.11.008 CrossRefGoogle Scholar
  31. 31.
    Hernández M, Bernal MdM, Verdejo R, Ezquerra TA, López-Manchado MA (2012) Overall performance of natural rubber/graphene nanocomposites. Compos Sci Technol 73:40–46. doi: 10.1016/j.compscitech.2012.08.012 CrossRefGoogle Scholar
  32. 32.
    Das A, Kasaliwal GR, Jurk R, Boldt R, Fischer D, Stöckelhuber KW, Heinrich G (2012) Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: a comparative study. Compos Sci Technol 72:1961–1967. doi: 10.1016/j.compscitech.2012.09.005 CrossRefGoogle Scholar
  33. 33.
    Wu J, Xing W, Huang G, Li H, Tang M, Wu S, Liu Y (2013) Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer 54:3314–3323. doi: 10.1016/j.polymer.2013.04.044 CrossRefGoogle Scholar
  34. 34.
    Yang H, Liu P, Zhang T, Duan Y, Zhang J (2014) Fabrication of natural rubber nanocomposites with high graphene contents via vacuum-assisted self-assembly. RSC Adv 4:27687–27690. doi: 10.1039/c4ra02950j CrossRefGoogle Scholar
  35. 35.
    Ozbas B, O’Neill CD, Register RA, Aksay IA, Prud’homme RK, Adamson DH (2012) Multifunctional elastomer nanocomposites with functionalized graphene single sheets. J Polym Sci Part B Polym Phys 50:910–916. doi: 10.1002/polb.23080 CrossRefGoogle Scholar
  36. 36.
    Ozbas B, Toki S, Hsiao BS, Chu B, Register RA, Aksay IA, Prud’homme RK, Adamson DH (2012) Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber. J Polym Sci Part B Polym Phys 50:718–723. doi: 10.1002/polb.23060 CrossRefGoogle Scholar
  37. 37.
    Xing W, Wu J, Huang G, Li H, Tang M, Fu X (2014) Enhanced mechanical properties of graphene/natural rubber nanocomposites at low content. Polym Int 63:1674–1681. doi: 10.1002/pi.4689 CrossRefGoogle Scholar
  38. 38.
    Schopp S, Thomann R, Ratzsch KF, Kerling S, Altstadt V, Mulhaupt R (2014) Functionalized graphene and carbon materials as components of styrene-butadiene rubber nanocomposites prepared by aqueous dispersion blending. Macromol Mater Eng 299:319–329. doi: 10.1002/mame.201300127 CrossRefGoogle Scholar
  39. 39.
    Boland CS, Khan U, Backes C, O’Neill A, McCauley J, Duane S, Shanker R, Liu Y, Jurewicz I, Dalton AB, Coleman JN (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 8:8819–8830. doi: 10.1021/Nn503454h CrossRefGoogle Scholar
  40. 40.
    Matos CF, Galembeck F, Zarbin AJ (2014) Multifunctional and environmentally friendly nanocomposites between natural rubber and graphene or graphene oxide. Carbon 78:469–479. doi: 10.1016/j.carbon.2014.07.028 CrossRefGoogle Scholar
  41. 41.
    Papageorgiou DG, Kinloch IA, Young RJ (2015) Graphene/elastomer nanocomposites. Carbon 95:460–484. doi: 10.1016/j.carbon.2015.08.055 CrossRefGoogle Scholar
  42. 42.
    Li ZL, Young RJ, Kinloch IA, Wilson NR, Marsden AJ, Raju APA (2015) Quantitative determination of the spatial orientation of graphene by polarized Raman spectroscopy. Carbon 88:215–224. doi: 10.1016/j.carbon.2015.02.072 CrossRefGoogle Scholar
  43. 43.
    Li ZL, Young RJ, Wilson NR, Kinloch IA, Valles C, Li Z (2016) Effect of the orientation of graphene-based nanoplatelets upon the Young’s modulus of nanocomposites. Compos Sci Technol 123:125–133. doi: 10.1016/j.compscitech.2015.12.005 CrossRefGoogle Scholar
  44. 44.
    Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59:1–43. doi: 10.1179/1743280413Y.0000000023 CrossRefGoogle Scholar
  45. 45.
    Zhang X, Aliasghari S, Nemcova A, Burnett TL, Kubena I, Smid M, Thompson GE, Skeldon P, Withers PJ (2016) X-ray computed tomographic investigation of the porosity and morphology of plasma electrolytic oxidation coatings. ACS Appl Mater Interfaces 8:8801–8810. doi: 10.1021/acsami.6b00274 CrossRefGoogle Scholar
  46. 46.
    Evans JE, Friedrich H, Bals S, Bradley RS, Dahmen T, De Backer A, de Jonge N, Elbaum M, Goris B, Houben L, Leary RK, Midgley PA, Slusallek P, Trampert P, Van Aert S, Van Tendeloo G, Withers PJ, Wolf SG (2016) Advanced tomography techniques for inorganic, organic, and biological materials. MRS Bull 41:516–524. doi: 10.1557/mrs.2016.134 CrossRefGoogle Scholar
  47. 47.
    Young RJ, Lovell PA (2013) Introduction to polymers, 3rd edn. CRC Press, Boca BatonGoogle Scholar
  48. 48.
    Gong L, Kinloch IA, Young RJ, Riaz I, Jalil R, Novoselov KS (2010) Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22:2694–2697. doi: 10.1002/adma.200904264 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Suhao Li
    • 1
  • Zheling Li
    • 1
  • Timothy L. Burnett
    • 2
  • Thomas J. A. Slater
    • 2
  • Teruo Hashimoto
    • 2
  • Robert J. Young
    • 1
    Email author
  1. 1.National Graphene Institute and School of MaterialsUniversity of ManchesterManchesterUK
  2. 2.Henry Moseley X-ray Imaging Facility and School of MaterialsUniversity of ManchesterManchesterUK

Personalised recommendations