Advertisement

Rational design of coaxial MWCNT-COOH@NiCo2S4 hybrid for supercapacitors

  • 477 Accesses

  • 11 Citations

Abstract

A simple one-step hydrothermal route was designed to decorate NiCo2S4 on the surface of carboxylated multiwalled carbon nanotubes (MWCNT-COOHs) to form coaxial MWCNT-COOH@NiCo2S4 hybrid. When employed as supercapacitor electrode material, the MWCNT-COOH@NiCo2S4 electrode shows a large specific capacitance and excellent rate performance. Coupled with activated carbon (AC) negative electrode, the operating voltage of MWCNT-COOH@NiCo2S4//AC asymmetric supercapacitor (ASC) could be extended to 1.5 V. Moreover, the MWCNT-COOH@NiCo2S4//AC ASC device achieves a maximum energy density of 33.6 Wh kg−1 at a power density of 375 W kg−1 with good cycle stability (about 83.3% of capacity was retained after 2000 cycles at 3 A g−1). In addition, a MWCNT-COOH@NiCo2S4//AC ASC device can drive a mini-fan. Therefore, the coaxial MWCNT-COOH@NiCo2S4 hybrid is a promising supercapacitor electrode material.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

  2. 2

    Kumar R, Rai P, Sharma A (2016) 3D urchin-shaped Ni3(VO4)2 hollow nanospheres for high-performance asymmetric supercapacitor applications. J Mater Chem A 4:9822–9831

  3. 3

    Li Z, Han J, Fan L, Wang M, Tao S, Guo R (2015) The anion exchange strategy towards mesoporous α-Ni(OH)2 nanowires with multinanocavities for high-performance supercapacitors. Chem Commun 51:3053–3056

  4. 4

    Liu L, Zhang H, Fang L, Mu Y, Wang Y (2016) Facile preparation of novel dandelion-like Fe-doped NiCo2O4 microspheres@nanomeshes for excellent capacitive property in asymmetric supercapacitors. J Power Sources 327:135–144

  5. 5

    Zhang G, Lou XW (2013) Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci Rep 3:1470

  6. 6

    Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730

  7. 7

    Li Z, Gu A, Lou Z, Sun J, Zhou Q, Chan KY (2017) Facile synthesis of iron-doped hollow urchin-like MnO2 for supercapacitors. J Mater Sci 52:4852–4865. doi:10.1007/s10853-016-0720-z

  8. 8

    Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894

  9. 9

    Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna P-L, Grey C, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1:16070

  10. 10

    Lee JH, Park N, Kim BG, Jung DS, Im K, Hur J, Choi JW (2013) Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7:9366–9374

  11. 11

    Redondo E, Carretero-González J, Goikolea E, Ségalini J, Mysyk R (2015) Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim Acta 160:178–184

  12. 12

    Gopalakrishnan K, Sultan S, Govindaraj A, Rao CNR (2015) Supercapacitors based on composites of PANI with nanosheets of nitrogen-doped RGO, BC1.5N, MoS2 and WS2. Nano Energy 12:52–58

  13. 13

    Li Z, Gu A, Sun J, Zhou Q (2016) Facile hydrothermal synthesis of NiS hollow microspheres with mesoporous shells for high-performance supercapacitors. New J Chem 40:1663–1670

  14. 14

    Zheng C, Cao C, Chang R, Hou J, Zhai H (2016) Hierarchical mesoporous NiCo2O4 hollow nanocubes for supercapacitors. Phys Chem Chem Phys 18:6268–6274

  15. 15

    Salunkhe RR, Ahn H, Kim JH, Yamauchi Y (2015) Rational design of coaxial structured carbon nanotube-manganese oxide (CNT-MnO2) for energy storage application. Nanotechnology 26:204004

  16. 16

    Mondal AK, Liu H, Li Z-F, Wang G (2016) Multiwall carbon nanotube-nickel cobalt oxide hybrid structure as high performance electrodes for supercapacitors and lithium ion batteries. Electrochim Acta 190:346–353

  17. 17

    Wen P, Fan M, Yang D, Wang Y, Cheng H, Wang J (2016) An asymmetric supercapacitor with ultrahigh energy density based on nickle cobalt sulfide nanocluster anchoring multi-wall carbon nanotubes hybrid. J Power Sources 320:28–36

  18. 18

    Hou L, Hua H, Bao R, Chen Z, Yang C, Zhu S, Pang G, Tong L, Yuan C, Zhang X (2016) Anion-exchange formation of hollow NiCo2S4 nanoboxes from mesocrystalline nickel cobalt carbonate nanocubes towards enhanced pseudocapacitive properties. ChemPlusChem 81:557–563

  19. 19

    Chen H, Chen S, Shao H, Li C, Fan M, Chen D, Tian G, Shu K (2016) Hierarchical NiCo2S4 nanotube@NiCo2S4 nanosheet arrays on Ni foam for high-performance supercapacitors. Chem Asian J 11:248–255

  20. 20

    Zhu Y, Ji X, Wu Z, Liu Y (2015) NiCo2S4 hollow microsphere decorated by acetylene black for high-performance asymmetric supercapacitor. Electrochim Acta 186:562–571

  21. 21

    Zhang Y, Ma M, Yang J, Sun C, Su H, Huang W, Dong X (2014) Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. Nanoscale 6:9824–9830

  22. 22

    Pu J, Cui F, Chu S, Wang T, Sheng E, Wang Z (2014) Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustain Chem Eng 2:809–815

  23. 23

    Li Z, Ji X, Han J, Hu Y, Guo R (2016) NiCo2S4 nanoparticles anchored on reduced graphene oxide sheets: in-situ synthesis and enhanced capacitive performance. J Colloid Interface Sci 477:46–53

  24. 24

    Kong W, Lu C, Zhang W, Pu J, Wang Z (2015) Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J Mater Chem A 3:12452–12460

  25. 25

    Salunkhe RR, Lin J, Malgras V, Dou SX, Kim JH, Yamauchi Y (2015) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218

  26. 26

    Wang X, Han X, Lim M, Singh N, Gan CL, Jan M, Lee PS (2012) Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J Phys Chem C 116:12448–12454

  27. 27

    Gao G, Lu S, Xiang Y, Dong B, Yan W, Ding S (2015) Free-standing ultrathin CoMn2O4 nanosheets anchored on reduced graphene oxide for high-performance supercapacitors. Dalton Trans 44:18737–18742

  28. 28

    Ye L, Zhao L, Zhang H, Zhang B, Wang H (2016) One-pot formation of ultra-thin Ni/Co hydroxides with a sheet-like structure for enhanced asymmetric supercapacitors. J Mater Chem A 4:9160–9168

  29. 29

    Liu B, Kong D, Huang ZX, Mo R, Wang Y, Han Z, Cheng C, Yang HY (2016) Three-dimensional hierarchical NiCo2O4 nanowire@Ni3S2 nanosheet core/shell arrays for flexible asymmetric supercapacitors. Nanoscale 8:10686–10694

  30. 30

    Wu Z, Pu X, Ji X, Zhu Y, Jing M, Chen Q, Jiao F (2015) High energy density asymmetric supercapacitors from mesoporous NiCo2S4 nanosheets. Electrochim Acta 174:238–245

  31. 31

    Sivanantham A, Ganesan P, Shanmugam S (2016) Hierarchical NiCo2S4 nanowire arrays supported on Ni Foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv Funct Mater 26:4661–4672

  32. 32

    Li Z, Qu Y, Wang M, Hu Y, Han J, Fan L, Guo R (2016) O/W interface-assisted hydrothermal synthesis of NiCo2S4 hollow spheres for high-performance supercapacitors. Colloid Polym Sci 294:1325–1332

  33. 33

    Pu J, Wang T, Wang H, Tong Y, Lu C, Kong W, Wang Z (2014) Direct growth of NiCo2S4 nanotube arrays on nickel foam as high-performance binder-free electrodes for supercapacitors. ChemPlusChem 79:577–583

  34. 34

    Wang M, Lai Y, Fang J, Qin F, Zhang Z, Li J, Zhang K (2016) Hydrangea-like NiCo2S4 hollow microspheres as an advanced bifunctional electrocatalyst for aqueous metal/air batteries. Catal Sci Technol 6:434–437

  35. 35

    Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14:831–838

  36. 36

    Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 5:8879–8883

  37. 37

    Zhu J, Jiang J, Sun Z, Luo J, Fan Z, Huang X, Zhang H, Yu T (2014) 3D Carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors. Small 10:2937–2945

  38. 38

    Huo H, Zhao Y, Xu C (2014) 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J Mater Chem A 2:15111–15117

  39. 39

    Wang R, Qi JQ, Sui YW, Chang Y, He YZ, Wei FX, Meng QK, Sun Z, Zhao YL (2016) Fabrication of nanosheets Co3O4 by oxidation-assisted dealloying method for high capacity supercapacitors. Mater Lett 184:181–184

  40. 40

    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

  41. 41

    Li Z, Yu X, Gu A, Tang H, Wang L, Lou Z (2017) Anion exchange strategy to synthesis of porous NiS hexagonal nanoplates for supercapacitors. Nanotechnology 28:065406

  42. 42

    Li R, Wang S, Huang Z, Lu F, He T (2016) NiCo2S4@Co(OH)2 core-shell nanotube arrays in situ grown on Ni foam for high performances asymmetric supercapacitors. J Power Sources 312:156–164

  43. 43

    Chen H, Jiang J, Zhang L, Xia D, Zhao Y, Guo D, Qi T, Wan H (2014) In situ growth of NiCo2S4 nanotube arrays on Ni foam for supercapacitors: maximizing utilization efficiency at high mass loading to achieve ultrahigh areal pseudocapacitance. J Power Sources 254:249–257

  44. 44

    Zhu Y, Wu Z, Jing M, Yang X, Song W, Ji X (2015) Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J Power Sources 273:584–590

  45. 45

    Li Z, Wu L, Wang L, Gu A, Zhou Q (2017) Nickel cobalt sulfide nanosheets uniformly anchored on porous graphitic carbon nitride for supercapacitors with high cycling performance. Electrochim Acta 231:617–625

  46. 46

    Tang Y, Chen S, Mu S, Chen T, Qiao Y, Yu S, Gao F (2016) Synthesis of capsule-like porous hollow nanonickel cobalt sulfides via cation exchange based on the Kirkendall effect for high-performance supercapacitors. ACS Appl Mater Interfaces 8:9721–9732

Download references

Acknowledgements

We thank for the Financial Support from the National Science and Technology Support Program (2014BAC03B06) and National Natural Science Foundation of China (21373103).

Author information

Correspondence to Zhongchun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (MPG 57688 kb)

Supplementary material 1 (DOCX 1325 kb)

Supplementary material 2 (MPG 57688 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xin, Y., Jia, H. et al. Rational design of coaxial MWCNT-COOH@NiCo2S4 hybrid for supercapacitors. J Mater Sci 52, 9661–9672 (2017). https://doi.org/10.1007/s10853-017-1115-5

Download citation

Keywords

  • Activate Carbon
  • Specific Capacitance
  • Multiwalled Carbon Nanotubes
  • Cyclic Voltammetry Curve
  • Equivalent Series Resistance