Skip to main content
Log in

The grain boundary character distribution of highly twinned nanocrystalline thin film aluminum compared to bulk microcrystalline aluminum

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The grain boundary character distribution (GBCD) of a 100-nm-thick Al thin film was measured as a function of annealing time by transmission electron microscopy-based crystal orientation mapping and compared to a bulk material with a grain size of 23 μm. The most significant difference between the thin film and bulk GBCDs is the concentration of Σ3 boundaries (boundaries with a misorientation of 60° around [111]), which were mostly coherent twins. The length fraction of Σ3 boundaries in the as-deposited thin film is 0.245, more than ten times the length fraction in the bulk sample (0.016). Although the concentrations of Σ3 boundaries are very different in the two samples, the population distributions are strongly correlated for all misorientations except Σ3. The results indicate that the characteristic GBCD develops at grain sizes as small as 109 nm. Annealing the thin film samples at 400 °C for 30 min or more leads to a strong 〈111〉 grain orientation texture and a decrease in the concentration of Σ3 grain boundaries. Grain size distributions for the samples in the current study show good agreement with prior reports that used image-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Kim CS, Rollett AD, Rohrer GS (2006) Grain boundary planes: new dimensions in the grain boundary character distribution. Scripta Mater 54:1005–1009. doi:10.1016/j.scriptamat.2005.11.071

    Article  Google Scholar 

  2. Lee SB, Key TS, Liang Z et al (2013) Microstructure design of lead-free piezoelectric ceramics. J Eur Ceram Soc 33:313–326. doi:10.1016/j.jeurceramsoc.2012.08.015

    Article  Google Scholar 

  3. Lu L, Shen YF, Chen XH, Qian LH, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426. doi:10.1126/science.1092905

    Article  Google Scholar 

  4. Randle V (2004) Twinning-related grain boundary engineering. Acta Mater 52:4067–4081. doi:10.1016/j.actamat.2004.05.031

    Article  Google Scholar 

  5. Sun T, Yao B, Warren AP et al (2010) Surface and grain-boundary scattering in nanometric cu films. Phys Rev B. doi:10.1103/PhysRevB.81.155454

    Google Scholar 

  6. Adams BL, Wright SI, Kunze K (1993) Orientation imaging—the emergence of a new microscopy. Metall Trans a-Phys Metall Mater Sci 24:819–831

    Article  Google Scholar 

  7. Beladi H, Rohrer GS (2013) The relative grain boundary area and energy distributions in a ferritic steel determined from three-dimensional electron backscatter diffraction maps. Acta Mater 61:1404–1412. doi:10.1016/j.actamat.2012.11.017

    Article  Google Scholar 

  8. Dillon SJ, Rohrer GS (2009) Characterization of the grain-boundary character and energy distributions of yttria using automated serial sectioning and ebsd in the fib. J Am Ceram Soc 92:1580–1585. doi:10.1111/j.1551-2916.2009.03064.x

    Article  Google Scholar 

  9. Rohrer GS, Li J, Lee S, Rollett AD, Groeber M, Uchic MD (2010) Deriving grain boundary character distributions and relative grain boundary energies from three-dimensional ebsd data. Mater Sci Technol 26:661–669. doi:10.1179/026708309X12468927349370

    Article  Google Scholar 

  10. Saylor DM, Morawiec A, Rohrer GS (2002) Distribution and energies of grain boundaries in magnesia as a function of five degrees of freedom. J Am Ceram Soc 85:3081–3083

    Article  Google Scholar 

  11. Rohrer GS, Saylor DM, El Dasher B, Adams BL, Rollett AD, Wynblatt P (2004) The distribution of internal interfaces in polycrystals. Zeitschrift Fur Metallkunde 95:197–214

    Article  Google Scholar 

  12. Beladi H, Rohrer GS (2013) The distribution of grain boundary planes in interstitial free steel. Metall Mater Trans A Phys Metall Mater Sci 44A:115–124. doi:10.1007/s11661-012-1393-0

    Article  Google Scholar 

  13. Ratanaphan S, Yoon Y, Rohrer GS (2014) The five parameter grain boundary character distribution of polycrystalline silicon. J Mater Sci 49:4938–4945. doi:10.1007/s10853-014-8195-2

    Article  Google Scholar 

  14. Saylor DM, El Dasher B, Sano T, Rohrer GS (2004) Distribution of grain boundaries in srtio3 as a function of five macroscopic parameters. J Am Ceram Soc 87:670–676

    Article  Google Scholar 

  15. Saylor DM, El Dasher BS, Rollett AD, Rohrer GS (2004) Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Mater 52:3649–3655. doi:10.1016/j.actamat.2004.04.018

    Article  Google Scholar 

  16. Rohrer GS (2011) Grain boundary energy anisotropy: a review. J Mater Sci 46:5881–5895. doi:10.1007/s10853-011-5677-3

    Article  Google Scholar 

  17. Rohrer GS (2011) Measuring and interpreting the structure of grain-boundary networks. J Am Ceram Soc 94:633–646. doi:10.1111/j.1551-2916.2011.04384.x

    Article  Google Scholar 

  18. Rauch EF, Barmak K, Ganesh K et al (2011) Tem automated orientation and phase mapping for thin film applications. Microsc Microanal 17:1086–1087

    Article  Google Scholar 

  19. Rauch EF, Dupuy L (2005) Rapid spot diffraction patterns identification through template matching. Arch Metall Mater 50:87–99

    Google Scholar 

  20. Rauch EF, Portillo J, Nicolopoulos S, Bultreys D, Rouvimov S, Moeck P (2010) Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Zeitschrift Fur Kristallographie 225:103–109. doi:10.1524/zkri.2010.1205

    Article  Google Scholar 

  21. Rauch EF, Veron M (2005) Coupled microstructural observations and local texture measurements with an automated crystallographic orientation mapping tool attached to a tem. Materialwiss Werkstofftech 36:552–556. doi:10.1002/mawe.200500923

    Article  Google Scholar 

  22. Carpenter JS, Liu X, Darbal A et al (2012) A comparison of texture results obtained using precession electron diffraction and neutron diffraction methods at diminishing length scales in ordered bimetallic nanolamellar composites. Scripta Mater 67:336–339. doi:10.1016/j.scriptamat.2012.05.018

    Article  Google Scholar 

  23. Darbal A, Ganesh K, Barmak K et al (2011) Grain boundary characterization of nanocrystalline cu from the stereological analysis of transmission electron microscope orientation maps. Microsc Microanal 17:1416–1417

    Article  Google Scholar 

  24. Darbal AD, Ganesh KJ, Liu X et al (2013) Grain boundary character distribution of nanocrystalline cu thin films using stereological analysis of transmission electron microscope orientation maps. Microsc Microanal 19:111–119. doi:10.1017/s1431927612014055

    Article  Google Scholar 

  25. Liu X, Choi D, Beladi H, Nuhfer NT, Rohrer GS, Barmak K (2013) The five-parameter grain boundary character distribution of nanocrystalline tungsten. Scripta Mater 69:413–416. doi:10.1016/j.scriptamat.2013.05.046

    Article  Google Scholar 

  26. Liu X, Nuhfer NT, Rollett AD et al (2014) Interfacial orientation and misorientation relationships in nanolamellar Cu/Nb composites using transmission-electron-microscope-based orientation and phase mapping. Acta Mater 64:333–344. doi:10.1016/j.actamat.2013.10.046

    Article  Google Scholar 

  27. Liu X, Nuhfer NT, Warren AP, Coffey KR, Rohrer GS, Barmak K (2015) Grain size dependence of the twin length fraction in nanocrystalline cu thin films via transmission electron microscopy based orientation mapping. J Mater Res 30:528–537. doi:10.1557/jmr.2014.393

    Article  Google Scholar 

  28. Liu X, Warren AP, Nuhfer NT, Rollett AD, Coffey KR, Barmak K (2014) Comparison of crystal orientation mapping-based and image-based measurement of grain size and grain size distribution in a thin aluminum film. Acta Mater 79:138–145. doi:10.1016/j.actamat.2014.07.014

    Article  Google Scholar 

  29. Randle V, Rohrer GS, Miller HM, Coleman M, Owen GT (2008) Five-parameter grain boundary distribution of commercially grain boundary engineered nickel and copper. Acta Mater 56:2363–2373. doi:10.1016/j.actamat.2008.01.039

    Article  Google Scholar 

  30. Ratanaphan S, Raabe D, Sarochawikasit R, Olmsted DL, Rohrer GS, Tu KN (2017) Grain boundary character distribution in electroplated nanotwinned copper. J Mater Sci 52:4070–4085. doi:10.1007/s10853-016-0670-5

    Article  Google Scholar 

  31. Barmak K, Eggeling E, Kinderlehrer D et al (2013) Grain growth and the puzzle of its stagnation in thin films: the curious tale of a tail and an ear. Prog Mater Sci 58:987–1055. doi:10.1016/j.pmatsci.2013.03.004

    Article  Google Scholar 

  32. Yao B, Petrova RV, Vanfleet RR, Coffey KR (2006) A modified back-etch method for preparation of plan-view high-resolution transmission electron microscopy samples. J Electron Microsc 55:209–214. doi:10.1093/jmicro/dfl027

    Article  Google Scholar 

  33. Wright SI, Larsen RJ (2002) Extracting twins from orientation imaging microscopy scan data. J Microsc Oxford 205:245–252. doi:10.1046/j.1365-2818.2002.00992.x

    Article  Google Scholar 

  34. Bojarski SA, Stuer M, Zhao Z, Bowen P, Rohrer GS (2014) Influence of Y and La additions on grain growth and the grain-boundary character distribution of alumina. J Am Ceram Soc 97:622–630. doi:10.1111/jace.12669

    Article  Google Scholar 

  35. Holm EA, Rohrer GS, Foiles SM, Rollett AD, Miller HM, Olmsted DL (2011) Validating computed grain boundary energies in fcc metals using the grain boundary character distribution. Acta Mater 59:5250–5256. doi:10.1016/j.actamat.2011.05.001

    Article  Google Scholar 

  36. Rohrer GS (2015) http://mimp.materials.cmu.edu/~gr20/Grain_Boundary_Data_Archive/

  37. Saylor DM, El-Dasher BS, Adams BL, Rohrer GS (2004) Measuring the five-parameter grain-boundary distribution from observations of planar sections. Metall Mater Trans A Phys Metall Mater Sci 35A:1981–1989

    Article  Google Scholar 

  38. Dingley D (2004) Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy. J Microsc Oxford 213:214–224. doi:10.1111/j.0022-2720.2004.01321.x

    Article  Google Scholar 

  39. Humphreys FJ (2001) Review—grain and subgrain characterisation by electron backscatter diffraction. J Mater Sci 36:3833–3854. doi:10.1023/a:1017973432592

    Article  Google Scholar 

  40. Barmak K Coffey KR (eds) (2014) Metallic films for electronic, optical and magnetic applications Woodhead Publishing, Cambridge

  41. Beladi H, Nuhfer NT, Rohrer GS (2014) The five-parameter grain boundary character and energy distributions of a fully austenitic high-manganese steel using three dimensional data. Acta Mater 70:281–289. doi:10.1016/j.actamat.2014.02.038

    Article  Google Scholar 

  42. Dillon SJ, Rohrer GS (2009) Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth. Acta Mater 57:1–7. doi:10.1016/j.actamat.2008.08.062

    Article  Google Scholar 

  43. Gruber J, George DC, Kuprat AP, Rohrer GS, Rollett AD (2005) Effect of anisotropic grain boundary properties on grain boundary plane distributions during grain growth. Scripta Mater 53:351–355. doi:10.1016/j.scriptamat.2005.04.004

    Article  Google Scholar 

  44. Gruber J, Miller HM, Hoffmann TD, Rohrer GS, Rollett AD (2009) Misorientation texture development during grain growth. Part I: simulation and experiment. Acta Mater 57:6102–6112. doi:10.1016/j.actamat.2009.08.036

    Article  Google Scholar 

  45. Denteneer PJH, Soler JM (1991) Defect energetics in aluminum. J Phys Condens Matter 3:8777–8792. doi:10.1088/0953-8984/3/45/003

    Article  Google Scholar 

  46. Hammer B, Jacobsen KW, Milman V, Payne MC (1992) Stacking-fault energies in aluminum. Journal of Physics-Condensed Matter 4:10453–10460. doi:10.1088/0953-8984/4/50/033

    Article  Google Scholar 

  47. Wright AF, Daw MS, Fong CY (1992) Theoretical investigation of (111)-stacking faults in aluminum. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 66:387–404

    Google Scholar 

  48. Xu JH, Lin W, Freeman AJ (1991) Twin-boundary and stacking-fault energies in Al and Pd. Phys Rev B 43:2018–2024. doi:10.1103/PhysRevB.43.2018

    Article  Google Scholar 

  49. Gallaghe PC (1970) Influence of alloying, temperature, and related effects on stacking fault energy. Metall Trans 1:2429–2430

    Google Scholar 

  50. Meyers MA, Murr LE (1978) Model for formation of annealing twins in fcc metals and alloys. Acta Metall 26:951–962. doi:10.1016/0001-6160(78)90046-9

    Article  Google Scholar 

  51. Oh DJ, Johnson RA (1988) Simple embedded atom method model for fcc and hcp metals. J Mater Res 3:471–478. doi:10.1557/jmr.1988.0471

    Article  Google Scholar 

  52. Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Deformation twinning in nanocrystalline aluminum. Science 300:1275–1277. doi:10.1126/science.1083727

    Article  Google Scholar 

  53. Narayan J, Zhu YT (2008) Self-thickening, cross-slip deformation twinning model. Appl Phys Lett. doi:10.1063/1.2911735

    Google Scholar 

  54. Zhu YT, Liao XZ, Wu XL (2008) Deformation twinning in bulk nanocrystalline metals: experimental observations. JOM 60:60–64. doi:10.1007/s11837-008-0120-1

    Article  Google Scholar 

  55. Legros M, Hemker KJ, Gouldstone A, Suresh S, Keller-Flaig RM, Arzt E (2002) Microstructural evolution in passivated al films on si substrates during thermal cycling. Acta Mater 50:3435–3452. doi:10.1016/s1359-6454(02)00157-x

    Article  Google Scholar 

  56. Miyazawa K, Iwasaki Y, Ito K, Ishida Y (1996) Combination rule of sigma values at triple junctions in cubic polycrystals. Acta Crystallogr Sect A 52:787–796. doi:10.1107/s0108767396005934

    Article  Google Scholar 

  57. Thompson CV (2000) Structure evolution during processing of polycrystalline films. Annu Rev Mater Sci 30:159–190. doi:10.1146/annurev.matsci.30.1.159

    Article  Google Scholar 

  58. Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57:3694–3703. doi:10.1016/j.actamat.2009.04.007

    Article  Google Scholar 

  59. Nix WD (2014) Metallic thin films: stresses and mechanical properties. In: Barmak K, Coffey KR (eds) Metallic films for electronic, optical and magnetic applications. Woodhead Publishing, Cambridge

    Google Scholar 

Download references

Acknowledgements

Financial support of the SRC, Task 1292.008, 2121.001, 2323.001 and of the MRSEC programs of the NSF under DMR-0520425 and DMR-1420634 is gratefully acknowledged. G.S.R. acknowledges support from the National Science Foundation under Grant DMR 1628994 and use of the Materials Characterization Facility at Carnegie Mellon University supported by Grant MCF-677785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katayun Barmak.

Ethics declarations

Conflicts of interest

No conflicts of interest exist for any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohrer, G.S., Liu, X., Liu, J. et al. The grain boundary character distribution of highly twinned nanocrystalline thin film aluminum compared to bulk microcrystalline aluminum. J Mater Sci 52, 9819–9833 (2017). https://doi.org/10.1007/s10853-017-1112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1112-8

Keywords

Navigation