Journal of Materials Science

, Volume 52, Issue 16, pp 9508–9519 | Cite as

Comparison of fracture properties of cellulose nanopaper, printing paper and buckypaper

  • Rui Mao
  • Stergios Goutianos
  • Wei Tu
  • Nan Meng
  • Guang Yang
  • Lars A. Berglund
  • Ton Peijs


Cellulose nanopaper consists of a dense fibrous self-binding network composed of cellulose nanofibres connected by physical entanglements, hydrogen bonding, etc. Compared with conventional printing paper, cellulose nanopaper has higher strength and modulus because of stronger fibres and inter-fibre bonding. The aim of this paper is to investigate the fracture properties of cellulose nanopaper using double edge notch tensile tests on samples with different notch lengths. It was found that strength is insensitive to notch length. A cohesive zone model was used to describe the fracture behaviour of notched cellulose nanopaper. Fracture energy was extracted from the cohesive zone model and divided into an energy component consumed by damage in the material and a component related to pull-out or bridging of nanofibres between crack surfaces which was not facilitated due to the limited fibre lengths for the case of nanopapers. For comparison, printing paper which has longer fibres than nanopaper was tested and modelled to demonstrate the importance of fibre length. Buckypaper, a fibrous network made of carbon nanotubes connected through van der Waals forces and physical entanglements, was also investigated to elaborate on the influence of inter-fibre connections.


Fracture Energy Bacterial Cellulose Linear Elastic Fracture Mechanic Cohesive Zone Model Printing Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Rui Mao would like to acknowledge the China Scholarship Council for their financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Gea S, Reynolds CT, Roohpur N, Soykeabkaew N, Wirjosentono B, Bilotti E, Peijs T (2010) Biodegradable composites based on poly(epsilon-caprolactone) and bacterial cellulose as a reinforcing agent. J Biobased Mater Bioenergy 4:384–390CrossRefGoogle Scholar
  2. 2.
    Gea S, Bilotti E, Reynolds C, Soykeabkeaw N, Peijs T (2010) Bacterial cellulose–poly(vinyl alcohol) nanocomposites prepared by an in situ process. Mater Lett 64:901–904CrossRefGoogle Scholar
  3. 3.
    Gea S, Torres F, Troncoso O, Reynolds C, Vilasecca F, Iguchi M, Peijs T (2007) Biocomposites based on bacterial cellulose and apple and radish pulp. Int Polym Proc 22:497–501CrossRefGoogle Scholar
  4. 4.
    Arévalo R, Peijs T (2016) Binderless all-cellulose fibreboard from microfibrillated lignocellulosic natural fibres. Compos A Appl Sci Manuf 83:38–46CrossRefGoogle Scholar
  5. 5.
    Sehaqui H, Liu AD, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromol 11:2195–2198CrossRefGoogle Scholar
  6. 6.
    Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromol 9:1579–1585CrossRefGoogle Scholar
  7. 7.
    Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRefGoogle Scholar
  8. 8.
    Shi Z, Zang S, Jiang F, Huang L, Lu D, Ma Y, Yang G (2012) In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Adv 2:1040–1046CrossRefGoogle Scholar
  9. 9.
    Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44:3358–3393CrossRefGoogle Scholar
  10. 10.
    Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200CrossRefGoogle Scholar
  11. 11.
    Berglund LA, Peijs T (2010) Cellulose biocomposites-from bulk moldings to nanostructured systems. MRS Bull 35:201–207CrossRefGoogle Scholar
  12. 12.
    Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598CrossRefGoogle Scholar
  13. 13.
    Huang J, Zhu HL, Chen YC, Preston C, Rohrbach K, Cumings J, Hu LB (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113CrossRefGoogle Scholar
  14. 14.
    Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRefGoogle Scholar
  15. 15.
    Stachewicz U, Peker I, Tu W, Barber AH (2011) Stress delocalization in crack tolerant electrospun nanofiber networks. ACS Appl Mater Interfaces 3:1991–1996CrossRefGoogle Scholar
  16. 16.
    Hagman A, Nygårds M (2012) Investigation of sample-size effects on in-plane tensile testing of paperboard. Nord Pulp Pap Res J 27:295–304CrossRefGoogle Scholar
  17. 17.
    Li J (2015) Investigation of the fracture resistance of paper utilizing a modified linear elastic fracture mechanics model. Master Dissertation, Miami UniversityGoogle Scholar
  18. 18.
    Ostlund S, Niskanen K, Karenlampi P (1999) On the prediction of the strength of paper structures with a flaw. J Pulp Pap Sci 25:356–360Google Scholar
  19. 19.
    Seth RS, Page DH (1974) Fracture resistance of paper. J Mater Sci 9:1745–1753CrossRefGoogle Scholar
  20. 20.
    Makela P (2002) On the fracture mechanics of paper. Nord Pulp Pap Res J 17:254–274CrossRefGoogle Scholar
  21. 21.
    Yuhara T, Kortschot MT (1993) A simplified determination of the J-Integral for paper. J Mater Sci 28:3571–3580CrossRefGoogle Scholar
  22. 22.
    Westerlind BS, Carlsson LA, Andersson YM (1991) Fracture toughness of liner board evaluated by the J-integral. J Mater Sci 26:2630–2636Google Scholar
  23. 23.
    Seth RS (1995) Measurement of in-plane fracture toughness of paper. Tappi J 78:177–183Google Scholar
  24. 24.
    Tanaka A, Yamauchi T (2000) Deformation and fracture of paper during the in-plane fracture toughness testing—examination of the essential work of fracture method. J Mater Sci 35:1827–1833CrossRefGoogle Scholar
  25. 25.
    Wanigaratne DMS, Batchelor WJ, Parker IH (2002) Comparison of fracture toughness of paper with tensile properties. Appita J 55:369–385Google Scholar
  26. 26.
    Goutianos S, Sørensen BF (2016) The application of J integral to measure cohesive laws under large-scale yielding. Eng Fract Mech 155:145–165CrossRefGoogle Scholar
  27. 27.
    Sorensen BF, Goutianos S, Jacobsen TK (2009) Strength scaling of adhesive joints in polymer-matrix composites. Int J Solids Struct 46:741–761CrossRefGoogle Scholar
  28. 28.
    Li S, Thouless MD, Waas AM, Schroeder JA, Zavattieri PD (2005) Use of a cohesive-zone model to analyze the fracture of a fiber-reinforced polymer-matrix composite. Compos Sci Technol 65:537–549CrossRefGoogle Scholar
  29. 29.
    Mohammed I, Liechti KM (2000) Cohesive zone modeling of crack nucleation at bimaterial corners. J Mech Phys Solids 48:735–764CrossRefGoogle Scholar
  30. 30.
    Yang QD, Thouless MD (2001) Mixed-mode fracture analyses of plastically-deforming adhesive joints. Int J Fract 110:175–187CrossRefGoogle Scholar
  31. 31.
    Zechner J, Janko M, Kolednik O (2013) Determining the fracture resistance of thin sheet fiber composites—paper as a model material. Compos Sci Technol 74:43–51CrossRefGoogle Scholar
  32. 32.
    Goutianos S, Arevalo R, Sorensen BF, Peijs T (2014) Effect of processing conditions on fracture resistance and cohesive laws of binderfree all-cellulose composites. Appl Compos Mater 21:805–825CrossRefGoogle Scholar
  33. 33.
    Ansari F, Skrifvars M, Berglund LA (2015) Nanostructured biocomposites based on unsaturated polyester resin and a cellulose nanofiber network. Compos Sci Technol 117:298–306CrossRefGoogle Scholar
  34. 34.
    Hervy M, Santmarti A, Lahtinenc P, Tammelin T, Lee KY (2017) Sample geometry dependency on the measured tensile properties of cellulose nanopapers. Mater Des 121:421–429CrossRefGoogle Scholar
  35. 35.
    Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRefGoogle Scholar
  36. 36.
    Zendehbad SM, Yang G (2016) Analysis of bacterial cellulose/ionic liquid MWCNTs via cyclic voltammetry. Adv Chem Eng Sci 6:34–42CrossRefGoogle Scholar
  37. 37.
    Zendehbad SM (2015) Controllable fabrication of BC based on time growth. Int J Mater Sci Appl 4:299–302Google Scholar
  38. 38.
    Skrzetuska E, Puchalski M, Krucińska I (2014) Chemically driven printed textile sensors based on graphene and carbon nanotubes. Sensors 14:16816–16828CrossRefGoogle Scholar
  39. 39.
    Nanocyl (2016) Technical Data Sheet: NC7000™. Accessed 27 Mar 2017
  40. 40.
    Morel S, Lespine C, Coureau JL, Planas J, Dourado N (2010) Bilinear softening parameters and equivalent LEFM R-curve in quasibrittle failure. Int J Solids Struct 47:837–850CrossRefGoogle Scholar
  41. 41.
    Abaqus (2011) Analysis user’s manual. Simulia, Providence, RIGoogle Scholar
  42. 42.
    Mollon V, Bonhomme J, Elmarakbi AM, Arguelles A, Vina J (2012) Finite element modelling of mode I delamination specimens by means of implicit and explicit solvers. Polym Test 31:404–410CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Rui Mao
    • 1
  • Stergios Goutianos
    • 2
  • Wei Tu
    • 3
  • Nan Meng
    • 1
  • Guang Yang
    • 4
  • Lars A. Berglund
    • 5
    • 6
  • Ton Peijs
    • 1
  1. 1.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK
  2. 2.Department of Wind Energy, Section of Composites and Materials MechanicsTechnical University of DenmarkRoskildeDenmark
  3. 3.Nanoforce Technology Ltd., Joseph Priestley BuildingQueen Mary University of LondonLondonUK
  4. 4.Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  5. 5.Department of Fibre and Polymer TechnologyRoyal Institute of TechnologyStockholmSweden
  6. 6.Wallenberg Wood Science CentreRoyal Institute of TechnologyStockholmSweden

Personalised recommendations