Journal of Materials Science

, Volume 52, Issue 13, pp 7754–7767 | Cite as

Electrocatalytic applications of platinum-decorated TiO2 nanotubes prepared by a fully wet-chemical synthesis

  • Markus Antoni
  • Falk Muench
  • Ulrike Kunz
  • Joachim Brötz
  • Wolfgang Donner
  • Wolfgang Ensinger
Energy materials

Abstract

Pt-decorated \(\hbox {TiO}_{2}\) nanotubes Pt@TiO2 are prepared only by applying a set of facile wet-chemical redox reactions to ion track-etched polycarbonate templates. First, a homogeneous layer of Pt nanoparticles is deposited onto the complex template surface by reducing potassium tetrachloroplatinate with absorbed dimethylaminoborane. Second, the template is coated with a conformal \(\hbox {TiO}_{2}\) layer, using a chemical bath deposition reaction based on titanium(III) chloride. After the removal of the template, the rutile-type \(\hbox {TiO}_{2}\) nanotubes remain decorated with Pt nanoparticles and nanoparticle-clusters on their outside. During the process, neither vacuum techniques nor external current sources or addition of heat are employed. The crystallinity, composition, and morphology of the composite nanotubes are analysed by X-ray diffraction, scanning and transmission electron microscopy as well as by energy-dispersive X-ray spectroscopy. Finally, the obtained materials are examplarily applied in the electrooxidation of ethanol and formic acid, and their performances have been evaluated. Compared to conventional carbon black-supported Pt nanoparticles, the Pt@TiO2 nanotubes show higher reaction rates. Mass activities of 2.36 \(\hbox {A}\hbox { mg}_{\rm Pt}^{-1}\hbox { cm}^{-2}\) are reached in ethanol oxidation and 7.56 \(\hbox {A}\hbox { mg}_{\rm Pt}^{-1}\hbox { cm}^{-2}\) in the formic acid oxidation. The present structures are able to exploit the synergy of Pt and \(\hbox {TiO}_{2}\) with a bifunctional mechanism to result in powerful but easy-to-fabricate catalyst structures. They represent an easily producible type of composite nanostructures which can be applied in various fields such as in catalytics and sensor technology.

References

  1. 1.
    Huang X-J, Choi Y-K (2007) Chemical sensors based on nanostructured materials. Sens Actuators B 122:659–671CrossRefGoogle Scholar
  2. 2.
    Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35CrossRefGoogle Scholar
  3. 3.
    Zhu C, Yang G, Li H, Dan D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249CrossRefGoogle Scholar
  4. 4.
    Lucia U (2014) Overview on fuel cells. Renew Sustain Energy Rev 30:164–169CrossRefGoogle Scholar
  5. 5.
    Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853CrossRefGoogle Scholar
  6. 6.
    Qiu J-D, Wang G-C, Liang R-P, Xia X-H, Hong-Wen Y (2011) Controllable deposition of platinum nanoparticles on graphene as and electrocatalyst for direct methanol fuel cells. J Phys Chem C 115:15639–15645CrossRefGoogle Scholar
  7. 7.
    Zhang C, Hongmei Y, Li F, Xiao Y, Gao Y, Li Y, Zeng Y, Jia J, Yi B, Shao Z (2015) An oriented ultrathin catalyst layer derived from high conductive TiO\(_{2}\) nanotube for polymer electrolyte membrane fuel cell. Electrochim Acta 153:361–369CrossRefGoogle Scholar
  8. 8.
    Clark JH (2016) Green and sustainable chemistry: an introduction. In: Green and sustainable medicinal chemistry: methods, tools and strategies for the 21st century pharameceutical industry, number 46 in RSC Green Chemistry. The Royal Society of Chemistry, CambridgeGoogle Scholar
  9. 9.
    Chow J, Kopp RJ, Portney PR (2003) Energy resources and global development. Science 302(5650):1528–1531CrossRefGoogle Scholar
  10. 10.
    Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189CrossRefGoogle Scholar
  11. 11.
    Pagliaro M, Konstandopoulos AG, Ciriminna R, Palmisano G (2010) Solar hydrogen: fuel of the near future. Energy Environ Sci 3:279–287CrossRefGoogle Scholar
  12. 12.
    Zhang S, Shao Y, Yin G, Lin Y (2013) Recent progress in nanostructured electrocatalyst PEM fuel cells. J Mater Chem A 1:4631–4641CrossRefGoogle Scholar
  13. 13.
    An L, Chen R (2016) Direct formate fuel cells: a review. J Power Sources 320:127–139CrossRefGoogle Scholar
  14. 14.
    Changwei X, Shen P, Liu Y (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164:527–531CrossRefGoogle Scholar
  15. 15.
    Yan Qiao and Chang Ming Li (2011) Nanostructured catalysts in fuel cells. J Mater Chem 21:4027–4036CrossRefGoogle Scholar
  16. 16.
    Rasmi KR, Vanithakumari SC, George RP, Mallika C, Kamachi Mudali U (2015) Nanoparticles of Pt loaded on a vertically aligned TiO\(_{2}\) nanotube bed. RSC Adv 5:108050–108057CrossRefGoogle Scholar
  17. 17.
    Zhou W, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B 46:273–285CrossRefGoogle Scholar
  18. 18.
    Beyhan S, Coutanceau C, Léger J-M, Napporn TW, Kadirgan F (2013) Promising anode candidates for direct ethanol fuel cell: carbon supported PtSn-based trimetallic catalysts prepared by Bönnemann method. Int J Hydrogen Energy 38:6830–6841CrossRefGoogle Scholar
  19. 19.
    Tayal J, Rawat B, Basu S (2012) Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int J Hydrogen Energy 37:4597–4605CrossRefGoogle Scholar
  20. 20.
    Akhairi MAF, Kamarudin SK (2016) Catalysts in direct ethanol fuel cell (DEFC): an overview. Int J Hydrogen Energy 41:4214–4226CrossRefGoogle Scholar
  21. 21.
    Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13:15384–15402CrossRefGoogle Scholar
  22. 22.
    Han M, Li M, Xin W, Zeng J, Liao S (2015) Highly stable and active Pt electrocatalyst on TiO\(_{2}\)-CoO4-C composite support for polymer exchange membrane fuel cells. Electrochim Acta 154:266–272CrossRefGoogle Scholar
  23. 23.
    Sui X-L, Wang Z-B, Li C-Z, Zhang J-J, Zhao L, Da-Ming G (2014) Effect of pH value on H\(_{2}\)Ti\(_{2}\)O\(_{5}\)/TiO\(_{2}\) composite nanotubes as pt catalyst support for methanol oxidation. J Power Sources 272:196–202CrossRefGoogle Scholar
  24. 24.
    Lei D, Shao Y, Sun J, Yin G, Liu J, Wang Y (2016) Advanced catalyst supports for PEM fuel cell cathodes. Nano Energy 29:314–322CrossRefGoogle Scholar
  25. 25.
    Eberle U, Müller B, von Helmolt R (2012) Fuel cell electric vehicles and hydrogen infrastructure: status 2012. Energy Environ Sci 5:8780–8798CrossRefGoogle Scholar
  26. 26.
    Zhao L, Wang Z-B, Liu J, Zhang J-J, Sui X-L, Zhang L-M, Da-Ming G (2015) Facile one-pot synthesis of Pt/graphene-TiO\(_{2}\) hybrid catalyst with enhanced methanol electrooxidation performance. J Power Sources 279:210–217CrossRefGoogle Scholar
  27. 27.
    Liu J, Liu B, Ni Z, Deng Y, Zhong C, Wenbin H (2014) Improved catalytic performance of Pt/TiO\(_{2}\) nanotubes electrode for ammonia oxidation under UV-light illumination. Electrochim Acta 150:146–150CrossRefGoogle Scholar
  28. 28.
    Liu R, Sen A (2012) Controlled synthesis of heterogeneous metal–titania nanostructures and their applications. J Am Chem Soc 134(42):17505–17512CrossRefGoogle Scholar
  29. 29.
    Boehme M, Ensinger W (2011) Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photoctalytic degradation of methylene-blue. Nano-Micro Lett 3(4):236–241CrossRefGoogle Scholar
  30. 30.
    Qiao P, Zou S, Shaodan X, Liu J, Li Y, Ma G, Xiao L, Lou H, Fan J (2014) A general synthesis strategy of multi-metallic nanoparticles within mesoporous titania via in situ photo-deposition. J Mater Chem 2:17321–17328CrossRefGoogle Scholar
  31. 31.
    Cohen JL, Volpe DJ, Abruña HD (2007) Electrochemical determination of activation energies for methanol oxidation on polycrystalline platinum in acidic and alkaline electrolytes. Phys Chem Chem Phys 9:49–77CrossRefGoogle Scholar
  32. 32.
    Muench F, Felix E-M, Rauber M, Schaefer S, Antoni M, Kunz U, Kleebe H-J, Trautmann C, Ensinger W (2016) Electrodeposition and electroless plating of hierarchical metal superstructures composed of 1d nano- and microscale building blocks. Electrochim Acta 202:47–54CrossRefGoogle Scholar
  33. 33.
    Tian M, Guosheng W, Chen A (2012) Unique electrochemical catalytic behaviour of Pt nanoparticles deposited on TiO\(_{2}\) nanotubes. ACS Catal 2:425–432CrossRefGoogle Scholar
  34. 34.
    Ting C-C, Liu C-H, Tai C-Y, Hsu S-C, Chao C-S, Pan F-M (2015) The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism. J Power Sources 280:166–172CrossRefGoogle Scholar
  35. 35.
    Xing L, Jia J, Wang Y, Zhang B, Dong S (2010) Pt modified TiO\(_{2}\) nanotubes electrode: preparation and electrocatalytic application for methanol oxidation. Int J Hydrogen Energy 35:12169–12173CrossRefGoogle Scholar
  36. 36.
    Muench F, Bohn S, Rauber M, Seidl T, Radetinac A, Kunz U, Lauterbach S, Kleebe H-J, Trautmann C, Ensinger W (2014) Polycarbonate activation for electroless plating by dimethylaminoborane absorption and subsequent nanoparticle deposition. Appl Phys A 116:287–294CrossRefGoogle Scholar
  37. 37.
    Muench F, Eils A, Toimil-Molares ME, Hossain UH, Radetinac A, Stegmann C, Kunz U, Lauterbach S, Kleebe H-J, Ensinger W (2014) Polymer activation by reducing agent absorption as a flexible tool for the creation of metal films and nanostructures by electroless plating. Surf Coat Technol 242:100–108CrossRefGoogle Scholar
  38. 38.
    Felix E-M, Antoni M, Pause I, Schaefer S, Kunz U, Weidler N, Muench F, Ensinger W (2016) Template-based synthesis of metallic Pd nanotubes by electroless deposition and their use as catalysts in the 4-nitrophenol model reaction. Green Chem 18:558–564CrossRefGoogle Scholar
  39. 39.
    Felix E-M, Muench F, Ensinger W (2014) Green plating of high aspect ratio gold nanotubes and their morphology-dependent performance in enzyme-free peroxide sensing. RSC Adv 4:24504–24510CrossRefGoogle Scholar
  40. 40.
    Boehme M, Fu G, Ionescu E, Ensinger W (2010) Fabrication of anatase titanium dioxide nanotubes by electroless deposition using polycarbonate for separate casting method. Nano-Micro Lett 2(1):26–30CrossRefGoogle Scholar
  41. 41.
    Zhang C, Hongmei Y, Li Y, Li F, Gao Y, Song W, Shao Z, Yi B (2013) Simple synthesis of Pt/TiO\(_{2}\) nanotube arrays with high activity and stability. J Electroanal Chem 701:14–19CrossRefGoogle Scholar
  42. 42.
    Wiberg N (2001) Holleman–Wiberg’s inorganic chemistry. Academic Press, New YorkGoogle Scholar
  43. 43.
    Cornelius TW, Apel PY, Schiedt B, Trautmann C, Toimil-Molares ME, Karim S, Neumann R (2007) Investigation of nanopore evolution in ion track-etched polycarbonate membranes. Nucl Instrum Methods Phys Res B 265:553–557CrossRefGoogle Scholar
  44. 44.
    Sertova N, Balanzat E, Toulemonde M, Trautmann C (2009) Investigation of initial stage of chemical etching of ion tracks in polycarbonate. Nucl Instrum Methods Phys Res B 267:1039–1044CrossRefGoogle Scholar
  45. 45.
    Kundu MK, Sadhukhan M, Barman S (2015) Ordered assemblies of silver nanoparticles on carbon nitride sheets and their application in the non-enzymatic sensing of hydrogen peroxide and glucose. J Mater Chem B 3:1289–1300CrossRefGoogle Scholar
  46. 46.
    Yang Z, Qi C, Zheng X, Zheng J (2015) Facile synthesis of silver nanoparticle-decorated graphene oxide nanocomposites and their application for electrochemical sensing. New J Chem 39:9358–9362CrossRefGoogle Scholar
  47. 47.
    Abd-Ellah M, Moghimi N, Zhang L, Thomas JP, McGillivray D, Srivastava S, Leung KT (2016) Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application. Nanoscale 8:1658–1664CrossRefGoogle Scholar
  48. 48.
    Kim EY, Kumar D, Khang G, Lim D-K (2015) Recent advances in gold nanoparticle-based bioengineering applications. J Mater Chem B 3:8433–8444CrossRefGoogle Scholar
  49. 49.
    Schaefer S, Felix E-M, Muench F, Antoni M, Lohaus C, Brötz J, Kunz U, Gärtner I, Ensinger W (2016) NiCo nanotubes plated on Pd seeds as a designed magnetically recollectable catalyt with high noble metal utilisation. RSC Adv 6:70033–70039CrossRefGoogle Scholar
  50. 50.
    Pozio A, De Francesco M, Cemmi A, Cardellini F, Giorgi L (2002) Comparison of high surface Pt/C catalysts by cyclic voltammetry. J Power Sources 105:13–19CrossRefGoogle Scholar
  51. 51.
    Mayrhofer KJJ, Strmcnik D, Blizanac BB, Stamenkovic V, Arenz M, Markovic NM (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalyst. Electrochim Acta 53:3181–3188CrossRefGoogle Scholar
  52. 52.
    Wang L, Yamauchi Y (2009) Facile synthesis of three-dimensional dendritic platinum nanoelectrocatalyst. Chem Mater 21:3562–3569CrossRefGoogle Scholar
  53. 53.
    Hua H, Chenguo H, Zhao Z, Liu H, Xie X, Xi Y (2013) Pt nanoparticles supported on submicrometer-sized TiO\(_{2}\) spheres for effective methanol and ethanol oxidation. Electrochim Acta 105:130–136CrossRefGoogle Scholar
  54. 54.
    Cherstiouk OV, Gavrilov AN, Plyasova LM, Molina IY, Tsirlina GA, Savinova ER (2008) Influence of structural defects on the electrocatalytic activity of platinum. J Solid State Electrochem 12:497–509CrossRefGoogle Scholar
  55. 55.
    Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12CrossRefGoogle Scholar
  56. 56.
    Camara GA, Iwasita T (2005) Parallel pathways of ethanol oxidation: the effect of ethanol concentration. J Electroanal Chem 578:315–321CrossRefGoogle Scholar
  57. 57.
    Hitmi H, Belgsir EM, Léger J-M, Lamy C, Lezna RO (1994) A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium. Electrochim Acta 39(3):407–415CrossRefGoogle Scholar
  58. 58.
    Bönnemann H, Brijoux W (1996) Catalytically active metal powders and colloids. In: Active materials, pp 339–379. VCH Verlagsgesellschaft mbHGoogle Scholar
  59. 59.
    Liu Z, Hong L, Tham MP, Lim TH, Jiang H (2006) Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J Power Sources 161:831–835CrossRefGoogle Scholar
  60. 60.
    Perales-Rondón JV, Solla-Guln J, Herrero E, Sánchez-Sánchez CM (2017) Enhanced catalytic activity and stability for the electrooxidation of formic acid on lead modified shape controlled platinum nanoparticles. Appl Catal B 201:48–57CrossRefGoogle Scholar
  61. 61.
    Jiang R, Li B, Fang C, Wang J (2014) Metal/semicondutor hybrid nanostructures for plasmon enhanced applications. Adv Mater 26:5274–5309CrossRefGoogle Scholar
  62. 62.
    Zhao Y, Sun L, Xi M, Feng Q, Jiang C, Fong H (2014) Electrospun TiO\(_2\) nanofelt surface-decorated with Ag nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering. ACS Appl Mater Interfaces 6:5759–5767CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Materials and Earth SciencesTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations