Journal of Materials Science

, Volume 52, Issue 13, pp 7937–7946 | Cite as

Ion-assisted deposition of amorphous PbO layers

  • O. Semeniuk
  • A. Csik
  • S. Kökényesi
  • A. Reznik
Original Paper


Lead oxide (PbO) is one of the most promising materials for application in direct conversion medical imaging X-ray detectors. Despite its high potential, conventional polycrystalline PbO layers deposited with the basic thermal evaporation method are not yet mature for practical use in X-ray imaging; indeed, they are highly porous, unstable at ambient conditions, and substoichiometric. In order to combat the above issues with PbO, we advance the basic evaporation process with simultaneous energetic ion bombardment of the growing film. We show that tuning the ion-assisted thermal deposition not only solves the structural problems of poly-PbO, but also enables the growth of a new non-crystalline polymorphic form of the material—amorphous PbO (a-PbO). In contrast to poly-PbO, novel a-PbO layers grown by ion-assisted thermal deposition are stable at ambient conditions. Structural and morphological analysis confirms that a-PbO is stoichiometric and free of detectable voids, which suggests higher bulk X-ray stopping power than porous poly-PbO.


PbO2 Grown Layer Pb3O4 Hydrocerussite Secondary Neutral Mass Spectrometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to Dr. Matthias Simon, Philips Research Labs, and Prof. Kai Wang, Joint Institute of Engineering at Carnegie Mellon University, for help in optimizing the PbO growth process. The authors gratefully acknowledge the financial support from the National Science and Engineering Research Council (NSERC), Canadian Institute for Health Research (CIHR) and Ontario Research Fund—Research Excellence (ORF-RE) program. Also, this publication is supported by the GINOP-2.3.2-15-2016-00041 project. The project is co-financed by the European Union and the European Regional Development Fund. Support by the TAMOP 4.2.2.A-11/1/KONV-2012-0036 project, which is co-financed by the European Union and European Social Fund, is also acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Simon M, Ford RA, Franklin AR et al (2005) Analysis of lead oxide (PbO) layers for direct conversion x-ray detection. IEEE Trans Nucl Sci 52:2035–2040. doi: 10.1109/NSSMIC.2004.1466833 CrossRefGoogle Scholar
  2. 2.
    Rowlands JA, Yorkstone J (2000) Flat panel detectors for digital radiography. In: Beutel J, Kundel HL, Van Metter RL (eds) Handbook of medical imaging, vol 1. SPIE Press, Bellingham, pp 223–328Google Scholar
  3. 3.
    Zentai G (2009) Photoconductor-based (direct) large-area x-ray imagers. JSID 17:543–550. doi: 10.1889/JSID17.6.543 CrossRefGoogle Scholar
  4. 4.
    Macleod HA (2010) Factors affecting layer and coating properties. In: Brown RGW, Pike ER (eds) Thin film optical filters, 4th edn. CRC Press, Boca Raton, pp 569–584Google Scholar
  5. 5.
    Anders A (2010) A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films 518:4087–4090. doi: 10.1016/j.tsf.2009.10.145 CrossRefGoogle Scholar
  6. 6.
    Semeniuk O, Juska G, Oelerich JO et al (2016) Charge transport mechanism in lead oxide revealed by CELIV technique. Sci Rep 6:33359. doi: 10.1038/srep33359 CrossRefGoogle Scholar
  7. 7.
    Wiechert DU, Grabowski SP, Simon M (2005) Raman spectroscopic investigation of evaporated PbO layers. Thin Solid Films 484:73–82. doi: 10.1016/j.tsf.2005.02.010 CrossRefGoogle Scholar
  8. 8.
    Bigelow JE, Haq KE (1962) Significance of fatigue in lead oxide vidicon target. J Appl Phys 33:2980–2982. doi: 10.1063/1.1728546 CrossRefGoogle Scholar
  9. 9.
    Hwang OH, Kim SS, Suh JH et al (2011) Effect of thermal annealing of lead oxide film. Nucl Instrum Methods Phys Res A 633:S69–S71. doi: 10.1016/j.nima.2010.06.125 CrossRefGoogle Scholar
  10. 10.
    Scanlon DO, Kehoe AB, Watson GW (2011) Nature of the band gap and origin of the conductivity of PbO2 revealed by theory and experiment. Phys Rev Lett 107:246402. doi: 10.1103/PhysRevLett107.246402 CrossRefGoogle Scholar
  11. 11.
    Berashevich J, Semeniuk O, Rubel O et al (2013) Lead monoxide α-PbO: electronic properties and point defect formation. J Phys: Condens Matter 25:075803. doi: 10.1088/0953-8984/25/7/075803 Google Scholar
  12. 12.
    Zhitomirsky I, Gal-Or L, Kohn A et al (1995) Electrochemical preparation of PbO films. J Mater Sci Lett 14:807–810. doi: 10.1007/BF00278136 CrossRefGoogle Scholar
  13. 13.
    Anders A (2005) Plasma and ion sources in large area coating: a review. Surf Coat Technol 200:1893–1906. doi: 10.1016/j.surfcoat.2005.08.018 CrossRefGoogle Scholar
  14. 14.
    Krishna MG, Rao KN, Mohan S (1992) Optical properties of ion assisted deposited zirconia thin films. J Vac Sci Technol, A 10:3451–3455. doi: 10.1116/1.577801 CrossRefGoogle Scholar
  15. 15.
    Allen TH (1982) Properties of ion assisted deposited silica and titania films. SPIE Proc 0325:93–100. doi: 10.1117/12.933291 CrossRefGoogle Scholar
  16. 16.
    Jensen TR, Warren J, Johnson RL (2002) Ion-assisted deposition of moisture-stable hafnium oxide films for ultraviolet applications. Appl Opt 41:3205–3210. doi: 10.1364/AO.41.003205 CrossRefGoogle Scholar
  17. 17.
    Netterfield RP, Sainty WG, Martin PJ et al (1985) Properties of CeO2 thin films prepared by oxygen–ion-assisted deposition. Appl Opt 24:2267–2272. doi: 10.1364/AO.24.002267 CrossRefGoogle Scholar
  18. 18.
    Wang K, Abbaszadeh S, Karim KS et al (2015) Reactive ion-assisted deposition of cerium oxide hole-blocking contact for leakage-current suppression in an amorphous selenium multilayer structure. IEEE Sens J 15:3871–3876. doi: 10.1109/JSEN.2015.2397953 CrossRefGoogle Scholar
  19. 19.
    McNeil JR, Barron AC, Wilson SR et al (1984) Ion-assisted deposition of optical thin films: low energy vs high energy bombardment. Appl Opt 23:552–559. doi: 10.1364/AO.23.000552 CrossRefGoogle Scholar
  20. 20.
    Wang L, Yoon MH, Lu G et al (2006) High-performance transparent inorganic–organic hybrid thin-film n-type transistors. Nat Mater 5:893–900. doi: 10.1038/nmat1755 CrossRefGoogle Scholar
  21. 21.
    Tan M, Deng Y, Hao Y (2013) Enhanced thermoelectric properties and superlattice structure of a Bi2Te3/ZrB2 film prepared by ion-beam-assisted deposition. J Phys Chem C 117:20415–20420. doi: 10.1021/jp4053133 CrossRefGoogle Scholar
  22. 22.
    Tepavcevic S, Choi Y, Hanley L (2003) Surface polymerization by ion-assisted deposition for polythiophene film growth. J Am Chem Soc 125:2396–2397. doi: 10.1021/ja029851s CrossRefGoogle Scholar
  23. 23.
    Farhan MS, Zalnezhad E, Bushroa AR et al (2013) Electrical and optical properties of indium-tin oxide (ITO) films by ion-assisted deposition (IAD) at room temperature. IJPEM 14:1465–1469. doi: 10.1007/s12541-013-0197-5 Google Scholar
  24. 24.
    Zhang XW, Boyen HG, Deyneka N (2003) Epitaxy of cubic boron nitride on (001)-oriented diamond. Nat Mater 2:312–315. doi: 10.1038/nmat870 CrossRefGoogle Scholar
  25. 25.
    NIST X-ray Photoelectron Spectroscopy Database. Accessed 12 Dec 2016
  26. 26.
    Vad K, Csik A, Langer GA (2009) Secondary neutral mass spectrometry—a powerful technique for quantitative elemental and depth profiling analyses of nanostructures. Spectrosc Eur 21:13-17. ISSN: 09660941Google Scholar
  27. 27.
    Geiger JF, Kopnarski M, Oechsner H (1987) SNMS-analysis of insulators. Mikrochim Acta 91:497–506. doi: 10.1007/BF01199524 CrossRefGoogle Scholar
  28. 28.
    Oechsner H (1995) Secondary neutral mass spectrometry (SNMS)-recent methodical progress and applications to fundamental studies in particle/surface interaction. Int J Mass Spectrom Ion Proces 143:271–282. doi: 10.1016/0168-1176(94)04122-N CrossRefGoogle Scholar
  29. 29.
    Kabir M, Kasap S, Rowlands AJ (2006) Photoconductors for X-ray image detectors. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer, New York, pp 1125–1126Google Scholar
  30. 30.
    Grenet J, Larmagnac JP, Michon P (1980) Aging and crystallization of evaporated amorphous selenium films. Thin Solid Films 67:L17–L20. doi: 10.1016/0040-6090(80)90309-0 CrossRefGoogle Scholar
  31. 31.
    Droessler LM, Assender HE, Watt AAR (2012) Thermally deposited lead oxides for thin film photovoltaics. Mater Lett 71:51–53. doi: 10.1016/j.matlet.2011.12.027 CrossRefGoogle Scholar
  32. 32.
    Zhang H, Ouyang J (2011) High-performance inverted polymer solar cells with lead monoxide-modified indium tin oxides as the cathode. Org Electron 12:1864–1871. doi: 10.1016/j.orgel.2011.07.023 CrossRefGoogle Scholar
  33. 33.
    Wang Q, Deng Z, Ma D (2009) Highly efficient inverted top-emitting organic light-emitting diodes using a lead monoxide electron injection layer. Opt Expr 17:17269–17278. doi: 10.1364/OE.17.017269 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • O. Semeniuk
    • 1
    • 2
  • A. Csik
    • 3
  • S. Kökényesi
    • 4
  • A. Reznik
    • 2
    • 5
  1. 1.Chemistry and Materials Science ProgramLakehead UniversityThunder BayCanada
  2. 2.Advanced Detection Devices DepartmentThunder Bay Regional Health Research InstituteThunder BayCanada
  3. 3.Institute for Nuclear ResearchHungarian Academy of SciencesDebrecenHungary
  4. 4.Institute of PhysicsUniversity of DebrecenDebrecenHungary
  5. 5.Department of PhysicsLakehead UniversityThunder BayCanada

Personalised recommendations