Advertisement

Journal of Materials Science

, Volume 52, Issue 12, pp 7591–7604 | Cite as

Hyperelastic behavior of modified sepiolite/SEBS thermoplastic elastomers

  • D. Perrin
  • R. Léger
  • B. Otazaghine
  • P. Ienny
Original Paper

Abstract

Thin elastomer films of styrene–ethylene–butylene–styrene block copolymer (SEBS) filled with sepiolite nanofibers nanocomposites were prepared by a dip-coating process. To increase the SEBS/sepiolite elastomer performances, a new strategy of surface modification of sepiolite by SEBS polymer chains has been developed. In a first part, the surface modification of sepiolite was characterized by FTIR and TGA. In a second part, the mechanical properties of the filled SEBS films were assessed. Measurements of tensile properties and tear strength were carried to evaluate the impact of the sepiolite modification. These results are discussed in taking account the filler dispersion and the quality of the SEBS/sepiolite interface. The surface modification of the sepiolite nanofibers shows an interesting improvement of the tear strength without major modifications of SEBS matrix intrinsic hyperelastic behavior.

Keywords

Sepiolite Thermoplastic Elastomer Zeolitic Water Mullins Effect Thickness Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was financially supported by the AREVA MELOX (N. Lantheaume) and PIERCAN SAS (D. Guérin) companies. TEM samples preparation and observation have been performed at the Centre Technologique des Microstructures, University of Claude Bernard, Lyon 1, France. The authors also thank P. Hangouët, N. Page, G. Chantereau, V. Diaz, T. Dutto and V. B. Nguyen who worked on this project.

References

  1. 1.
    Matzeu G, Pucci A, Savi S, Romanelli M, Di Francesco F (2012) A temperature sensor based on a MWCNT/SEBS nanocomposite. Sens Actuators A 178:94–99CrossRefGoogle Scholar
  2. 2.
    Juárez D, Ferrand S, Fenollar O, Fombuena V, Balart R (2011) Improvement of thermal inertia of styrene–ethylene/butylene–styrene (SEBS) polymers by addition of microencapsulated phase change materials (PCMs). Eur Polym J 47(2):153–161CrossRefGoogle Scholar
  3. 3.
    Shi H, Shi D, Li C, Luan S, Yin J, Li RKY (2014) Preparation of functionalized graphene/SEBS-g-MAH nanocomposites and improvement of its electrical, mechanical properties. Mater Lett 133:200–203CrossRefGoogle Scholar
  4. 4.
    Buckley CP, Prisacariu C, Martin C (2010) Elasticity and inelasticity of thermoplastic polyurethane elastomers: sensitivity to chemical and physical structure. Polymer 51:3213–3224CrossRefGoogle Scholar
  5. 5.
    Dorfmann A, Ogden RW (2004) A pseudo–elastic model for the Mullins effect in filled rubber. Int J Solids Struct 41:1855–1878CrossRefGoogle Scholar
  6. 6.
    Ogden RW, Roxburgh DG (1999) A pseudo–elastic model for the Mullins effect in filled rubber. Proc R Soc Lond A 455:2861–2877CrossRefGoogle Scholar
  7. 7.
    Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362CrossRefGoogle Scholar
  8. 8.
    Mullins L, Tobin N (1957) Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers. Rubber Chem Technol 30:51–571Google Scholar
  9. 9.
    Chagnon G, Verron E, Marckmann G, Gornet L (2006) Development of new constitutive equations for the Mullins effect in rubber using the network alteration theory. Int J Solids Struct 43(22–23):6817–6831CrossRefGoogle Scholar
  10. 10.
    Marckmann G, Verron E, Gornet L, Chagnon G, Charrier P, Fort P (2002) Comparison of hyperelastic models for rubber-like materials. J Mech Phys Solids 50:2011–2028CrossRefGoogle Scholar
  11. 11.
    Jaudouin O, Robin JJ, Perrin D, Sonnier R, Ienny P, Léger R, Lopez-Cuesta JM (2012) Incorporation of organomodified layered silicates and silica in thermoplastic elastomers in order to improve tear strength. Mater Sci Forum 714:217–227CrossRefGoogle Scholar
  12. 12.
    G’Sell C, Coupard A (1997) Génie mécanique des caoutchoucs et les élastomères thermoplastiques. In: Bouchereau MN (eds) Formulation des élastomères. Apollor, INPL, LRCCP, FIRTECHGoogle Scholar
  13. 13.
    Aso O, Eguiazábal JI, Nazábal J (2007) The influence of surface modification on the structure and properties of a nanosilica filled thermoplastic elastomer. Compos Sci Technol 67(13):2854–2863CrossRefGoogle Scholar
  14. 14.
    Finnigan B, Martin D, Halley P, Truss R, Campbell K (2004) Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates. Polymer 45:2249–2260CrossRefGoogle Scholar
  15. 15.
    Hassan PA, Verma G, Ganguly R (2012) 1—Soft materials—properties and applications. In: Functional materials, pp 1–59Google Scholar
  16. 16.
    Jaudouin O (2011) Physico-chimie de matériaux à base d’élastomères modifiés hyperélastiques, Ph.D. thesis, University of Montpellier 2. http://www.theses.fr/2012MON20036
  17. 17.
    Haraguchi K, Ebato M, Takehisa T (2006) Polymer-clay nanocomposites exhibiting abnormal necking phenomena accompanied by extremely large reversible elongations and excellent transparency. Adv Mater 18:2250–2254CrossRefGoogle Scholar
  18. 18.
    Chen-Yang YW, Lee YK, Chen YT, Wu JC (2007) High improvement in the properties of exfoliated PU/clay nanocomposites by the alternative swelling process. Polymer 48:2969–2979CrossRefGoogle Scholar
  19. 19.
    Polyurethane composition having improved tear strength and process for preparation thereof Patent, US Patent (1977), 4,062,825Google Scholar
  20. 20.
    Vuillaume K (2001) Interactions élastomères—charges. Mécanismes de déplacement des molécules adsorbées et co-adsorbées. Ph.D. thesis, University de Mulhouse. http://www.theses.fr/2001MULH0641
  21. 21.
    Wagner MP (1976) Reinforcing silicas and silicates. Rubber Chem Technol 49(3):703–774. doi: 10.5254/1.3534979 CrossRefGoogle Scholar
  22. 22.
    Zhenjung Z, Lina Z, Yang L (2005) Effect of the addition of toluene on the structure and properties of styrene–isoprene–butadiene rubber/montmorillonite nanocomposites. Macromol Mater Eng 290(5):430–437CrossRefGoogle Scholar
  23. 23.
    Deng C, Lu X, Zhou SB, Wan JX, Qu SX, Feng B, Li XH, Cheng QY (2008) Mechanism of ultrahigh elongation rate of poly(d, l-lactide)-matrix composite biomaterial containing nano-apatite fillers. Mater Lett 62(4–5):607–610CrossRefGoogle Scholar
  24. 24.
    Ma Z, Huang X, Jiang P (2010) A comparative study of effects of SEBS and EPDM on the water tree resistance of cross-linked polyethylene. Polym Degrad Stab 95(9):1943–1949CrossRefGoogle Scholar
  25. 25.
    Wang X, Pang S-I, Yang J-H, Yang F (2006) Structure and properties of SEBS/PP/OMMT nanocomposites. Trans Nonferrous Met Soc China 16(2):524–528CrossRefGoogle Scholar
  26. 26.
    Zhan M-Q, Yang K-K, Wang Y-Z (2015) Shape-memory poly(p-dioxanone)-poly(ɛ-caprolactone)/sepiolite nanocomposites with enhanced recovery stress. Chin Chem Lett 26:1221–1224CrossRefGoogle Scholar
  27. 27.
    Flexible sheets for waterproofing—determination of resistance to tearing—Part 2: plastic and rubber sheets for roof waterproofing. NF EN 12310-2 February 2001Google Scholar
  28. 28.
    Kuang W, Facey GA, Detellier C, Casal B, Serratosa JM, Ruiz-Hitzky E (2003) Nanostructured hybrid materials formed by sequestration of pyridine molecules in the tunnels of sepiolite. Chem Mater 15:4956–4967CrossRefGoogle Scholar
  29. 29.
    Tartaglione G, Tabuani D, Camino G (2008) Thermal and morphological characterization of organically modified sepiolite. Microporous Mesoporous Mater 107:161–168CrossRefGoogle Scholar
  30. 30.
    del Hoyo C, Dorado C, Rodríguez-Cruz MS, Sánchez-Martín MJ (2008) Physico-chemical study of selected surfactant-clay mineral systems. J Therm Anal Calorim 94(1):227–234CrossRefGoogle Scholar
  31. 31.
    Benlikaya R, Alkan M, Kaya İ (2009) Preparation and characterization of sepiolite-poly (ethyl methacrylate) and poly (2-hydroxyethyl methacrylate) nanocomposites. Polym Compos 30:1585–1594CrossRefGoogle Scholar
  32. 32.
    Roya N, Bhowmick AK (2010) Novel in situ polydimethylsiloxane-sepiolite nanocomposites: structure-property relationship. Polymer 51(22):5172–5185CrossRefGoogle Scholar
  33. 33.
    Maiti M, Bhowmick AK (2006) Structure and properties of some novel fluoroelastomer/clay nanocomposites with special reference to their interaction. J Polym Sci B Polym Phys 44(1):162–176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Centre des Matériaux des mines d’Alès (C2MA)Ecole des mines d’Alès (Institut Mines Telecom)Alès Cedex 9France

Personalised recommendations