Advertisement

Journal of Materials Science

, Volume 52, Issue 12, pp 7149–7157 | Cite as

Novel octahedral tilt system a + b + c + in (1 − x)Na0.5Bi0.5TiO3xCdTiO3 solid solutions

  • R. Ignatans
  • M. DunceEmail author
  • E. Birks
  • A. Sternberg
Original Paper
  • 146 Downloads

Abstract

(1 − x)Na0.5Bi0.5TiO3xCdTiO3 solid solutions in the whole concentration range (0.0 ≤ x ≤ 1.0) were studied by means of X-ray diffraction, dielectric spectroscopy and polarization measurements. The study was mainly focused on crystalline structure of the compositions, depending on their place in the phase diagram. The solid solution system exhibits at least four different phases at room temperature, giving rise to paraelectric, ferroelectric and relaxor ferroelectric behaviour. There were proposed appropriate space groups for each of these phases, using Rietveld refinement method for analysis of the X-ray diffraction patterns and taking into account polarization measurement results. Unexpected and unusual octahedral tilt systems—a + a + a + and a + b + c +—were found in certain CdTiO3 concentration ranges. The tilt system a + b + c +, which was detected in the ferroelectric phase, was evidenced for the first time, as it has been theoretically predicted, but never experimentally observed before in any material. It was shown that ferroelectricity in (1 − x)Na0.5Bi0.5TiO3xCdTiO3 solid solutions arises not only from the Ti+4 displacements, but also from the polar distortions in square planar and cubooctahedral cation A-sites. Upon heating, at a phase transition from the ferroelectric to the paraelectric state, a + b + c + tilt system transforms into a + a + a +. The studied compositions were compared with (1 − x)Na0.5Bi0.5TiO3xCaTiO3 solid solution system, as CdTiO3 and CaTiO3 are crystallographically very similar. It was revealed that both constituents behave very differently. CaTiO3 in (1 − x)Na0.5Bi0.5TiO3xCaTiO3, even in low concentrations, stabilizes solid solutions in its Pnma space group, unlike its counterpart CdTiO3 in the studied materials.

Keywords

Solid Solution Rietveld Refinement Ferroelectric Phase Superstructure Reflection Solid Solution System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been supported by National Research Program in the framework of project “Multifunctional Materials and composites, photonics and nanotechnology (IMIS2)”.

References

  1. 1.
    Rao BN, Olivi L, Sathe V, Ranjan R (2016) Electric field and temperature dependence of the local structural disorder in the lead-free ferroelectric Na0.5Bi0.5TiO3: an EXAFS study. Phys Rev B 93:024106. doi: 10.1103/PhysRevB.93.024106 CrossRefGoogle Scholar
  2. 2.
    Aksel E, Forrester JS, Kowalski B, Jones JL, Thomas PA (2011) Phase transition sequence in sodium bismuth titanate observed using high-resolution X-ray diffraction. Appl Phys Lett 99:222901. doi: 10.1063/1.3664393 CrossRefGoogle Scholar
  3. 3.
    Dunce M, Birks E, Antonova M, Plaude A, Ignatans R, Sternberg A (2013) Structure and dielectric properties of Na1/2Bi1/2TiO3–BaTiO3 solid solutions. Ferroelectrics 447:1–8. doi: 10.1080/00150193.2013.821382 CrossRefGoogle Scholar
  4. 4.
    Gorfman S, Thomas PA (2010) Evidence for a non-rhombohedral average structure in the lead-free piezoelectric material Na0.5Bi0.5TiO3. J Appl Crystallogr 43:1409–1414. doi: 10.1107/S002188981003342X CrossRefGoogle Scholar
  5. 5.
    Rao BN, Ranjan R (2012) Electric-field-driven monoclinic-to-rhombohedral transformation in Na1/2Bi1/2TiO3. Phys Rev B 86:134103. doi: 10.1103/PhysRevB.86.134103 CrossRefGoogle Scholar
  6. 6.
    Glazer AM (1975) Simple ways of determining perovskite structures. Acta Crystallogr Sect A 31:756–762. doi: 10.1107/S0567739475001635 CrossRefGoogle Scholar
  7. 7.
    Jones GO, Thomas PA (2002) Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr Sect B 58:168–178. doi: 10.1107/S0108768101020845 CrossRefGoogle Scholar
  8. 8.
    Dorcet V, Trolliard G, Boullay P (2008) Reinvestigation of phase transitions in Na0.5Bi 0.5TiO3 by TEM. Part I: first order rhombohedral to orthorhombic phase transition. Chem Mater 20:5061–5073. doi: 10.1021/cm8004634 CrossRefGoogle Scholar
  9. 9.
    Birks E, Dunce M, Ignatans R, Kuzmin A, Plaude A, Antonova M, Kundzins K, Sternberg A (2016) Structure and dielectric properties of Na0.5Bi0.5TiO3–CaTiO3 solid solutions. J Appl Phys 119:074102. doi: 10.1063/1.4942221 CrossRefGoogle Scholar
  10. 10.
    Kennedy BJ, Zhou Q, Avdeev M (2011) The ferroelectric phase of CdTiO3: a powder neutron diffraction study. J Solid State Chem 184:2987–2993. doi: 10.1016/j.jssc.2011.08.028 CrossRefGoogle Scholar
  11. 11.
    Sasaki S, Prewitt CT, Bass JD, Schulze WA (1987) Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group. Acta Crystallogr Sect C 43:1668–1674. doi: 10.1107/S0108270187090620 CrossRefGoogle Scholar
  12. 12.
    Lufaso MW, Woodward PM (2001) Prediction of the crystal structures of perovskites using the software program SPuDS. Acta Crystallogr Sect B 57:725–738. doi: 10.1107/S0108768101015282 CrossRefGoogle Scholar
  13. 13.
    Dunce M, Birks E, Antonova M, Zauls V, Kundzinsh M, Fuith A (2011) Structure and physical properties of Na1/2Bi1/2TiO3-CdTiO3 solid solutions. Ferroelectrics 417:93–99. doi: 10.1080/00150193.2011.578502 CrossRefGoogle Scholar
  14. 14.
    Гepцeн HП, Лeбeдeв BM, Cтeмбep HГ, дp и (1979) Иccлeдoвaниe твepдыx pacтвopoв cиcтeмы (Na0.5Bi0.5)TiO3–CdTiO3. Heopг мaтepиaлы 15:2202–2206Google Scholar
  15. 15.
    Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22:151–152. doi: 10.1107/S0365110X67000234 CrossRefGoogle Scholar
  16. 16.
    Taut T, Kleeberg R, Bergmann J (1998) The new seifert Rietveld program BGMN and its application to quantitative phase analysis. Mater Struct 5:57–66Google Scholar
  17. 17.
    Doebelin N, Kleeberg R (2015) Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr 48:1573–1580. doi: 10.1107/S1600576715014685 CrossRefGoogle Scholar
  18. 18.
    Woodward DI, Reaney IM (2005) Electron diffraction of tilted perovskites. Acta Crystallogr Sect B 61:387–399. doi: 10.1107/S0108768105015521 CrossRefGoogle Scholar
  19. 19.
    Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Crystallogr Sect B 28:3384–3392. doi: 10.1107/S0567740872007976 CrossRefGoogle Scholar
  20. 20.
    Stokes HT, Kisi EH, Hatch DM, Howard CJ (2002) Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. Acta Crystallogr Sect B 58:934–938. doi: 10.1107/S0108768102015756 CrossRefGoogle Scholar
  21. 21.
    Campbell BJ, Stokes HT, Tanner DE, Hatch DM (2006) ISODISPLACE: a web-based tool for exploring structural distortions. J Appl Crystallogr 39:607–614. doi: 10.1107/S0021889806014075 CrossRefGoogle Scholar
  22. 22.
    Woodward PM (1997) Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Crystallogr B 53:44–66. doi: 10.1107/S0108768196012050 CrossRefGoogle Scholar
  23. 23.
    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. doi: 10.1107/S0021889811038970 CrossRefGoogle Scholar
  24. 24.
    Moriwake H, Kuwabara A, Fisher CAJ, Taniguchi H, Itoh M, Tanaka I (2011) First-principles calculations of lattice dynamics in CdTiO3 and CaTiO3: phase stability and ferroelectricity. Phys Rev B 84:104114. doi: 10.1103/PhysRevB.84.104114 CrossRefGoogle Scholar
  25. 25.
    Benedek NA, Fennie CJ (2013) Why are there so few perovskite ferroelectrics? J Phys Chem C 117:13339–13349. doi: 10.1021/jp402046t CrossRefGoogle Scholar
  26. 26.
    Bokov AA, Ye Z-G (2006) Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 41:31–52. doi: 10.1007/s10853-005-5915-7 CrossRefGoogle Scholar
  27. 27.
    Röhler J (1996) On the stereochemistry of cations in the doping block of superconducting copper oxides. J Supercond 9:457–461. doi: 10.1007/BF00727296 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of FerroelectricsInstitute of Solid State Physics, University of LatviaRigaLatvia

Personalised recommendations