Advertisement

Journal of Materials Science

, Volume 52, Issue 12, pp 7067–7076 | Cite as

Vacancy-mediated ferromagnetism in Co-implanted ZnO studied using a slow positron beam

  • D. D. Wang
  • B. Zhao
  • N. Qi
  • Z. Q. ChenEmail author
  • A. Kawasuso
Original Paper

Abstract

Co\(^+\) ions with multiple energies from 50 to 380 keV were implanted into ZnO single crystals up to a total dose of \(1.25\times 10^{17}\,\hbox {cm}^2\). The implanted samples were annealed in open air for 30 min between 200 and 1100 \(^{\circ }\)C. All the samples before and after implantation and annealing were characterized by X-ray diffraction (XRD), Raman scattering and positron annihilation measurements. XRD and Raman scattering measurements indicate that Co implantation induces severe lattice damage, and after annealing the damage recovers gradually. No Co clusters or Co-related second phase was observed in the implanted samples. Doppler broadening of positron annihilation radiation measurements using a slow positron beam reveals a large number of vacancy clusters introduced by Co implantation. After annealing up to 1000 \(^{\circ }\)C, almost all the defects induced by implantation are removed. The implanted samples show clear ferromagnetism measured at 5 K. It shows very slight decrease after annealing at 700 \(^{\circ }\)C and becomes much weaker after annealing at 1000 \(^{\circ }\)C. The origin of ferromagnetism is most probably due to substitution of Co\(^+\) ions at Zn lattice sites. However, it is apparent that the decrease in magnetization after annealing is consistent with the vacancy recovery process, indicating that the ferromagnetism in Co-implanted ZnO is mediated by defects such as Zn vacancy (V\(_{Zn}\)) or vacancy clusters. First principles calculations also support that Zn-related monovacancies and vacancy clusters can enhance the ferromagnetism in Co-doped ZnO.

Keywords

Positron Annihilation Vacancy Cluster Vacancy Defect Positron Energy Positron Annihilation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11305117, 11475130 and 11575131 and by Henan University of Science and Technology (Grant No. 2015GJB014).

References

  1. 1.
    Chambers SA (2002) A potential role in spintronics. Mater Today 5:34–39CrossRefGoogle Scholar
  2. 2.
    Punnoose A, Reddy KM, Hays J, Thurber A (2006) Magnetic gas sensing using a dilute magnetic semiconductor. Appl Phys Lett 89:112509CrossRefGoogle Scholar
  3. 3.
    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022CrossRefGoogle Scholar
  4. 4.
    Pearton SJ, Abernathy CR, Overberg ME, Thaler GT, Norton DP, Theodoropoulou N, Hebard AF, Park YD, Ren F, Kim J (2003) Wide band gap ferromagnetic semiconductors and oxides. J Appl Phys 93:1–13CrossRefGoogle Scholar
  5. 5.
    Alaria J, Bieber H, Colis S, Schmerber G, Dinia A (2006) Absence of ferromagnetism in Al-doped Zn0.9Co0.10O diluted magnetic semiconductors. Appl Phys Lett 88:112503CrossRefGoogle Scholar
  6. 6.
    Theodoropoulou N, Hebard AF, Overberg ME, Abernathy CR, Pearton SJ, Chu SNG, Wilson RG (2001) Magnetic and structural properties of Mn-implanted GaN. Appl Phys Lett 78:3475–3477CrossRefGoogle Scholar
  7. 7.
    Majid A, Sharif R, Husnain G, Ali A (2009) Annealing effects on the structural optical and magnetic properties of Mn implanted GaN. J Phys D Appl Phys 42:135401–135409CrossRefGoogle Scholar
  8. 8.
    Sharma VK, Varma GD (2009) Effect of Al and Sb doping on the magnetic properties of ZnMnO and ZnCoO. J Appl Phys 105:07C510CrossRefGoogle Scholar
  9. 9.
    Ueda K, Tabata H, Kawai T (2001) Magnetic and electric properties of transition-metal-doped ZnO films. Appl Phys Lett 79:988–990CrossRefGoogle Scholar
  10. 10.
    Schwartz DA, Gamelin DR (2004) Reversible 300 K ferromagnetic ordering in a diluted magnetic semiconductor. Adv Mater 16:2115–2119CrossRefGoogle Scholar
  11. 11.
    Wang Q, Sun Q, Chen G, Kawazoe Y, Jena P (2008) Vacancy-induced magnetism in ZnO thin films and nanowires. Phys Rev B Condens Matter 77:205411CrossRefGoogle Scholar
  12. 12.
    Zuo X, Yoon SD, Yang A, Duan WH, Vittoria C, Harris VG (2009) Ferromagnetism in pure wurtzite zinc oxide. J Appl Phys 105:07C508CrossRefGoogle Scholar
  13. 13.
    Gao D, Zhang Z, Fu J, Xu Y, Qi J, Xue D (2009) Room temperature ferromagnetism of pure ZnO nanoparticles. J Appl Phys 105:113928CrossRefGoogle Scholar
  14. 14.
    Liu W, Li W, Hu Z, Tang Z, Tang X (2011) Effect of oxygen defects on ferromagnetic of undoped ZnO. J Appl Phys 110:123911CrossRefGoogle Scholar
  15. 15.
    Zhan P, Xie Z, Li Z, Wang W, Zhang Z, Li Z, Cheng G, Zhang P, Wang B, Cao X (2013) Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals. Appl Phys Lett 102:071914CrossRefGoogle Scholar
  16. 16.
    Hsu HS, Huang JCA, Huang YH, Liao YF (2006) Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO. Appl Phys Lett 88:242507CrossRefGoogle Scholar
  17. 17.
    Yan WS, Sun Z, Liu Q, Li Z, Pan Z, Wang J, Wei S, Wang D, Zhou Y, Zhang X (2007) Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO. Appl Phys Lett 91:062113CrossRefGoogle Scholar
  18. 18.
    Liu EZ, Jiang JZ (2010) O-vacancy-mediated spin-spin interaction in Co-doped ZnO: first-principles total-energy calculations. J Appl Phys 107:023909CrossRefGoogle Scholar
  19. 19.
    Yan WS, Jiang QH, Sun ZH, Yao T, Hu FC, Wei SQ (2010) Determination of the role of O vacancy in Co:ZnO magnetic film. J Appl Phys 108:013901CrossRefGoogle Scholar
  20. 20.
    Gu H, Zhang W, Xu Y, Yan M (2012) Effect of oxygen deficiency on room temperature ferromagnetism in Co doped ZnO. Appl Phys Lett 100:202401CrossRefGoogle Scholar
  21. 21.
    Liu WJ, Tang XD, Tang Z (2013) Effect of oxygen defects on ferromagnetism of Mn doped ZnO. J Appl Phys 114:123911CrossRefGoogle Scholar
  22. 22.
    Ren HT, Xiang G, Gu G, Zhang X (2014) Enhancement of ferromagnetism of ZnO: Co nanocrystals by post-annealing treatment: the role of oxygen interstitials and zinc vacancies. Mater Lett 122:256–260CrossRefGoogle Scholar
  23. 23.
    Simimol A, Anappara AA, Greulich-Weber S, Chowdhury P, Barshilia HC (2015) Enhanced room temperature ferromagnetism in electrodeposited Co-doped ZnO nanostructured thin films by controlling the oxygen vacancy defects. J Appl Phys 117:214310CrossRefGoogle Scholar
  24. 24.
    Shao Q, Wang C, Zapien JA, Leung CW, Ruotolo A (2015) Ferromagnetism in Ti-doped ZnO thin films. J Appl Phys 117:17B908CrossRefGoogle Scholar
  25. 25.
    Li XL, Wang ZL, Qin XF, Wu HS, Xu XH, Gehring GA (2008) Enhancement of magnetic moment of Co-doped ZnO films by postannealing in vacuum. J Appl Phys 103:023911CrossRefGoogle Scholar
  26. 26.
    Lee HJ, Jeong SY, Cho CR, Park CH (2002) Study of diluted magnetic semiconductor: Co-doped ZnO. Appl Phys Lett 81:4020–4022CrossRefGoogle Scholar
  27. 27.
    Rode K, Anane A, Mattana R, Contour JP, Durand O, Lebourgeois R (2003) Magnetic semiconductors based on cobalt substituted ZnO. J Appl Phys 93:7676–7678CrossRefGoogle Scholar
  28. 28.
    Lawes G, Risbud AS, Ramire AP, Seshadri R (2005) Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO. Phys Rev B 71:045201CrossRefGoogle Scholar
  29. 29.
    Zhang Z, Chen Q, Lee HD, Xue YY, Sun YY, Chen H, Chen F, Chu WK (2006) Absence of ferromagnetism in Co-doped ZnO prepared by thermal diffusion of Co atoms. J Appl Phys 100:043909CrossRefGoogle Scholar
  30. 30.
    Yin S, Xu MX, Yang L, Liu JF, Rosner H, Hahn H, Gleiter H, Schild D, Doyle S, Liu T, Hu TD, Takayama-Muromachi E, Jiang JZ (2006) Absence of ferromagnetism in bulk polycrystalline Zn0.9Co0.1O. Phys Rev B 73:224408CrossRefGoogle Scholar
  31. 31.
    de Carvalho HB, de Godoy MPF, Paes RWD, Mir M, Ortiz de Zevallos A, Iikawa F, Brasil MJSP, Chitta VA, Ferraz WB, Boselli MA, Sabioni ACS (2010) Absence of ferromagnetic order in high quality bulk Co-doped ZnO samples. J Appl Phys 108:033914CrossRefGoogle Scholar
  32. 32.
    Norton DP, Overberg ME, Pearton SJ, Pruessner K, Budai JD, Boatner LA, Chisholm MF, Lee JS, Khim ZG, Park YD (2003) Ferromagnetism in cobalt-implanted ZnO. Appl Phys Lett 83:5488–5490CrossRefGoogle Scholar
  33. 33.
    Potzger K, Zhou S, Reuther H, Mucklich A, Eichhorn F, Schell N, Skorupa W, Helm M, Fassbender J, Herrmannsdorfer T (2006) Fe implanted ferromagnetic ZnO. Appl Phys Lett 88:052508CrossRefGoogle Scholar
  34. 34.
    Wu P, Saraf G, Lu Y, Hill DH, Gateau R, Wielunski L, Bartynski RA, Arena DA, Dvorak J, Moodenbaugh A (2006) Ferromagnetism in Fe-implanted a-plane ZnO films. Appl Phys Lett 89:012508CrossRefGoogle Scholar
  35. 35.
    Zhou SQ, Potzger K, Borany JV, Grotzschel R, Skorupa W, Helm M, Fassbender J (2008) Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing. Phys Rev B 77:035209CrossRefGoogle Scholar
  36. 36.
    Schumm M, Koerdel M, Muller S, Ronning C, Dynowska E, Golacki Z, Szuszkiewicz W, Geurts J (2009) Secondary phase segregation in heavily transition metal implanted ZnO. J Appl Phys 105:083525CrossRefGoogle Scholar
  37. 37.
    Wikberg JM, Knut R, Audren A, Ottosson M, Linnarsson MK, Karis O, Hallen A, Svedlindh P (2011) Annealing effects on structural and magnetic properties of Co implanted ZnO single crystals. J Appl Phys 109:083918CrossRefGoogle Scholar
  38. 38.
    Srivastava P, Ghosh S, Joshi B, Satyarthi P (2012) Probing origin of room temperature ferromagnetism in Ni ion implanted ZnO films with x-ray absorption spectroscopy. J Appl Phys 111:013715CrossRefGoogle Scholar
  39. 39.
    Chen ZQ, Wang SJ, Maekawa M, Kawasuso A, Naramoto H, Yuan XL, Sekiguchi T (2007) Thermal evolution of defects in as-grown and electron-irradiated ZnO studied by positron annihilation. Phys Rev B 75:245206CrossRefGoogle Scholar
  40. 40.
    Chen ZQ, Kawasuso A, Xu Y, Naramoto H, Yuan XL, Sekiguchi T, Suzuki R, Ohdaira T (2005) Microvoid formation in hydrogen-implanted ZnO probed by a slow positron beam. Phys Rev B 71:115213CrossRefGoogle Scholar
  41. 41.
    Chen ZQ, Maekawa M, Yamamoto S, Kawasuso A, Yuan XL, Sekiguchi T, Suzuki R, Ohdaira T (2004) Evolution of voids in Al-implanted ZnO probed by a slow positron beam. Phys Rev B 69:035210CrossRefGoogle Scholar
  42. 42.
    Tuomisto F, Ranki V, Saarinen K, Look DC (2003) Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. Phys Rev Lett 91:205502CrossRefGoogle Scholar
  43. 43.
    Biersack JP, Haggmark LG (1980) A Monte Carlo computer program for the transport of energetic ions in amorphous targets. Nucl Instrum Methods 174(1–2):257–269CrossRefGoogle Scholar
  44. 44.
    Wang XB, Song C, Geng KW, Zeng F, Pan F (2006) Luminescence and Raman scattering properties of Ag-doped ZnO films. J Phys D Appl Phys 39:4992–4996CrossRefGoogle Scholar
  45. 45.
    Mandal SK, Das AK, Nath TK, Karmakar D (2006) Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles. Appl Phys Lett 89:144105CrossRefGoogle Scholar
  46. 46.
    Park JH, Min GK, Jang HM, Ryu S, Kim YM (2004) Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films. Appl Phys Lett 84:1338–1340CrossRefGoogle Scholar
  47. 47.
    Damen TC, Porto SPS, Tell B (1966) Raman effect in zinc oxide. Phys Rev 142:570–574CrossRefGoogle Scholar
  48. 48.
    Chen ZQ, Kawasuso A, Xu Y, Naramoto H (2005) Production and recovery of defects in phosphorus-implanted ZnO. J Appl Phys 97:013528CrossRefGoogle Scholar
  49. 49.
    Zeng JN, Low JK, Ren ZM, Liew T, Lu YF (2002) Effect of deposition conditions on optical and electrical properties of ZnO films prepared by pulsed laser deposition. Appl Surf Sci 197–198:362–367CrossRefGoogle Scholar
  50. 50.
    Jeong S-H, Kim J-K, Lee B-T (2003) Effects of growth conditions on the emission properties of ZnO films prepared on Si (100) by rf magnetron sputtering. J Phys D Appl Phys 36:2017CrossRefGoogle Scholar
  51. 51.
    Youn CJ, Jeong TS, Han MS, Kim JH (2004) Optical properties of Zn-terminated ZnO bulk. J Cryst Growth 261:526–532CrossRefGoogle Scholar
  52. 52.
    Zhang T, Song L, Chen Z, Shi E, Chao L, Zhang H (2006) Origin of ferromagnetism of (Co, Al)-codoped ZnO from first-principles calculations. Appl Phys Lett 89:172502CrossRefGoogle Scholar
  53. 53.
    Hu S, Yan S, Zhao M, Mei L (2006) First-principles LDA+U calculations of the Co-doped ZnO magnetic semiconductor. Phys Rev B 73:245205CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • D. D. Wang
    • 1
    • 2
  • B. Zhao
    • 2
  • N. Qi
    • 2
  • Z. Q. Chen
    • 2
    Email author
  • A. Kawasuso
    • 3
  1. 1.School of Physics and EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.Hubei Nuclear Solid Physics Key Laboratory, Department of PhysicsWuhan UniversityWuhanChina
  3. 3.Advanced Science Research CenterJapan Atomic Energy AgencyTakasakiJapan

Personalised recommendations