Advertisement

Journal of Materials Science

, Volume 52, Issue 11, pp 6697–6711 | Cite as

Co(II) ethylene glycol carboxylates for Co3O4 nanoparticle and nanocomposite formation

  • K. Assim
  • S. Schulze
  • M. Pügner
  • M. Uhlemann
  • T. Gemming
  • L. Giebeler
  • M. Hietschold
  • T. Lampke
  • H. Lang
Original Paper

Abstract

Ethylene glycol-functionalized Co(II) carboxylates [Co(CO2CH2(OC2H4) n OMe)2] (2a, n = 1; 2b, n = 2), [Co(CO2CHPh(OC2H4)2OMe)2] (2c) and [Co(CO2CMe2(O–C2H4)2OMe)2] (2d) have been synthesized by the reaction of [Co(OAc)2·4H2O] with the corresponding acids MeO(C2H4O) n CRR′CO2H (n = 1, 2; R=H, R′=Me; R=H, R′=Ph). Based on the IR spectroscopic studies, the binding motif of the carboxylato ligands to cobalt is discussed. Thermogravimetry and mass spectrometry studies were carried out in order to investigate the thermal decomposition mechanism of 2a2d in the solid state. Based on the result obtained, complex 2b was chosen as single-source precursor for the generation and stabilization of Co3O4 nanoparticles (NPs) by solid-state thermal decomposition in air. Depending on the decomposition time, NPs with different chemical composition (consisting of Co3O4, CoO and Co) and with crystallite sizes ranging from 9 to 18 nm were obtained. Furthermore, the preparation of cobalt oxide-based nanocomposites by twin polymerization of 2,2′-spirobi[4H-1,3,2-benzodioxasiline] (3) in the presence of 2b is reported. After treatment of the as-prepared hybrid material by either oxidation or etching, the respective mesoporous carbon/silica (IUPAC type IV isotherms) matrices were obtained. Quenched solid and nonlinear density functional theory calculations gave a surface area of 1040 cm2 g−1 for the respective carbon and 336 cm2 g−1 for the appropriate silica material. Powder X-ray diffraction measurements confirm the formation of Co3O4 NPs in both components. High-angle annular dark field scanning transmission electron microscopy revealed well-distributed particles within the silica matrix, whereas no particles were found in the carbon material. The electrochemical properties of the composite materials have been investigated by cyclic voltammetry. The respective silica material shows five reduction events (Co3O4 to CoO, CoO to Co), while no redox potentials occurred for the Co3O4 NPs embedded in the carbon matrix.

Keywords

Co3O4 Solid Electrolyte Interphase Methanesulfonic Acid Silica Component Dark Field Scanning Transmission Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) (GRK 1215—Material and Concepts for Advanced Interconnects and Nanosystems) for generous financial support. Cornelia Kowol from Fraunhofer Institute for Electronic Nano Systems (ENAS) is acknowledged for measuring the SEM and EDX spectra, and H. Gnägi (Diatome AG, Biel, Switzerland) is thanked for TEM sample preparations. The authors would also like to thank T. Windberg from the group of Prof. Dr. S. Spange for taking the N2 adsorption/desorption measurements.

Supplementary material

10853_2017_904_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1539 kb)

References

  1. 1.
    Han S, Wang C, Huang Y et al (2016) Graphene frameworks supported cobalt oxide with tunable morphologies for enhanced lithium storage behaviors. J Mater Sci 51:4856–4863. doi: 10.1007/s10853-016-9790-1 CrossRefGoogle Scholar
  2. 2.
    Salek G, Dufour P, Guillemet-Fritsch S, Tenailleau C (2015) Sustainable low temperature preparation of Mn3−xCoxO4 (0 ≤ x < 3) spinel oxide colloidal dispersions used for solar absorber thin films. Mater Chem Phys 162:252–262. doi: 10.1016/j.matchemphys.2015.05.065 CrossRefGoogle Scholar
  3. 3.
    Zhao C, Li J, Chen W et al (2015) Synthesis and electrochemical properties of ordered mesoporous carbon supported well-dispersed cobalt oxide nanoparticles for supercapacitor. Mater Res Bull 64:55–60. doi: 10.1016/j.materresbull.2014.12.047 CrossRefGoogle Scholar
  4. 4.
    Xu JM, Cheng JP (2016) The advances of Co3O4 as gas sensing materials: a review. J Alloys Compd 686:753–768. doi: 10.1016/j.jallcom.2016.06.086 CrossRefGoogle Scholar
  5. 5.
    Wang Y, Guo J, Wang T et al (2015) Mesoporous transition metal oxides for supercapacitors. Nanomaterials 5:1667–1689. doi: 10.3390/nano5041667 CrossRefGoogle Scholar
  6. 6.
    Xu W, Li T-T, Zheng Y-Q (2016) Porous Co3O4 nanoparticles derived from a Co(II)-cyclohexanehexacarboxylate metal–organic framework and used in a supercapacitor with good cycling stability. RSC Adv 6:86447–86454. doi: 10.1039/C6RA17471J CrossRefGoogle Scholar
  7. 7.
    Qiu H-J, Liu L, Mu Y-P et al (2015) Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices. Nano Res 8:321–339. doi: 10.1007/s12274-014-0589-6 CrossRefGoogle Scholar
  8. 8.
    Grzelczak M, Zhang J, Pfrommer J et al (2013) Electro- and photochemical water oxidation on ligand-free co3o4 nanoparticles with tunable sizes. ACS Catal 3:383–388. doi: 10.1021/cs3007523 CrossRefGoogle Scholar
  9. 9.
    Lee E, Jang J-H, Kwon Y-U (2015) Composition effects of spinel MnxCo3−xO4 nanoparticles on their electrocatalytic properties in oxygen reduction reaction in alkaline media. J Power Sources 273:735–741. doi: 10.1016/j.jpowsour.2014.09.156 CrossRefGoogle Scholar
  10. 10.
    Lai T-L, Lai Y-L, Lee C-C et al (2008) Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenol. Catal Today 131:105–110. doi: 10.1016/j.cattod.2007.10.039 CrossRefGoogle Scholar
  11. 11.
    Warang T, Patel N, Fernandes R et al (2013) Co3O4 nanoparticles assembled coatings synthesized by different techniques for photo-degradation of methylene blue dye. Appl Catal B Environ 132–133:204–211. doi: 10.1016/j.apcatb.2012.11.040 CrossRefGoogle Scholar
  12. 12.
    Dai Q, Tang J (2013) The optical and magnetic properties of CoO and Co nanocrystals prepared by a facile technique. Nanoscale 5:7512–7519. doi: 10.1039/c3nr01971c CrossRefGoogle Scholar
  13. 13.
    Abu-Zied BM, Bawaked SM, Kosa SA, Schwieger W (2015) Effect of microwave power on the thermal genesis of Co3O4 nanoparticles from cobalt oxalate micro-rods. Appl Surf Sci 351:600–609. doi: 10.1016/j.apsusc.2015.05.151 CrossRefGoogle Scholar
  14. 14.
    Yan Q, Li X, Zhao Q, Chen G (2012) Shape-controlled fabrication of the porous Co3O4 nanoflower clusters for efficient catalytic oxidation of gaseous toluene. J Hazard Mater 209–210:385–391. doi: 10.1016/j.jhazmat.2012.01.039 CrossRefGoogle Scholar
  15. 15.
    Farhadi S, Pourzare K, Bazgir S (2014) Co3O4 nanoplates: synthesis, characterization and study of optical and magnetic properties. J Alloys Compd 587:632–637. doi: 10.1016/j.jallcom.2013.10.259 CrossRefGoogle Scholar
  16. 16.
    Park J, Joo J, Kwon SG et al (2007) Synthese monodisperser sphärischer Nanokristalle. Angew Chem 119:4714–4745. doi: 10.1002/ange.200603148 CrossRefGoogle Scholar
  17. 17.
    Park J, An K, Hwang Y et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895. doi: 10.1038/nmat1251 CrossRefGoogle Scholar
  18. 18.
    Ghiasi M, Malekzadeh A, Mardani H (2016) Synthesis and optical properties of cubic Co3O4 nanoparticles via thermal treatment of a trinuclear cobalt complex. Mater Sci Semicond Process 42:311–318. doi: 10.1016/j.mssp.2015.10.019 CrossRefGoogle Scholar
  19. 19.
    Bartůněk V, Huber Š, Sedmidubský D et al (2014) CoO and Co3O4 nanoparticles with a tunable particle size. Ceram Int 40:12591–12595. doi: 10.1016/j.ceramint.2014.04.082 CrossRefGoogle Scholar
  20. 20.
    Bhattacharjee CR, Purkayastha DD, Das N (2013) Surfactant-free thermal decomposition route to phase pure tricobalt tetraoxide nanoparticles from cobalt(II)–tartrate complex. J Sol-Gel Sci Technol 65:296–300. doi: 10.1007/s10971-012-2935-z CrossRefGoogle Scholar
  21. 21.
    Dong X-C, Xu H, Wang X-W et al (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213. doi: 10.1021/nn300097q CrossRefGoogle Scholar
  22. 22.
    Wang H-W, Hu Z-A, Chang Y-Q et al (2011) Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix. Mater Chem Phys 130:672–679. doi: 10.1016/j.matchemphys.2011.07.043 CrossRefGoogle Scholar
  23. 23.
    Shan Y, Gao L (2007) Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors. Mater Chem Phys 103:206–210. doi: 10.1016/j.matchemphys.2007.02.038 CrossRefGoogle Scholar
  24. 24.
    Zhi J, Deng S, Zhang YX et al (2013) Embedding Co3O4 nanoparticles in SBA-15 supported carbon nanomembrane for advanced supercapacitor materials. J Mater Chem A 1:3171–3176. doi: 10.1039/c2ta01253g CrossRefGoogle Scholar
  25. 25.
    Liang C, Li Z, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717. doi: 10.1002/anie.200702046 CrossRefGoogle Scholar
  26. 26.
    Saini VK, Andrade M, Pinto ML et al (2010) How the adsorption properties get changed when going from SBA-15 to its CMK-3 carbon replica. Sep Purif Technol 75:366–376. doi: 10.1016/j.seppur.2010.09.006 CrossRefGoogle Scholar
  27. 27.
    Spange S, Kempe P, Seifert A et al (2009) Nanokomposite mit 0.5 bis 3 nm großen Strukturdomänen durch Polymerisation von Silicium-Spiroverbindungen. Angew Chem 121:8403–8408. doi: 10.1002/ange.200901113 CrossRefGoogle Scholar
  28. 28.
    Ebert T, Seifert A, Spange S (2015) Twin polymerization—a new principle for hybrid material synthesis. Macromol Rapid Commun. doi: 10.1002/marc.201500182 Google Scholar
  29. 29.
    Schliebe C, Gemming T, Mertens L et al (2014) Twin polymerization: a unique and efficient tool for supporting silver nanoparticles on highly porous carbon and silica. Eur J Inorg Chem 2014:3161–3163. doi: 10.1002/ejic.201402299 CrossRefGoogle Scholar
  30. 30.
    Warren SC, Perkins MR, Werner-Zwanziger U et al (2012) Generalized routes to mesostructured silicates with high metal content. Z Phys Chem 226:1219–1228. doi: 10.1524/zpch.2012.0295 CrossRefGoogle Scholar
  31. 31.
    Adner D, Möckel S, Korb M et al (2013) Copper(II) and triphenylphosphine copper(I) ethylene glycol carboxylates: synthesis, characterisation and copper nanoparticle generation. Dalton Trans 42:15599. doi: 10.1039/c3dt51913a CrossRefGoogle Scholar
  32. 32.
    Adner D, Wolf FM, Möckel S et al (2014) Copper(II) ethylene glycol carboxylates as precursors for inkjet printing of conductive copper patterns. Thin Solid Films 565:143–148. doi: 10.1016/j.tsf.2014.06.054 CrossRefGoogle Scholar
  33. 33.
    Deacon G (1980) Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev 33:227–250. doi: 10.1016/S0010-8545(00)80455-5 CrossRefGoogle Scholar
  34. 34.
    Zhu H-L, Zeng Q-F, Xia D-S et al (2003) Crystal structure of diaqua-di(2-methoxyacetato)cobalt(II), C6H14CoO8. Z Krist New Cryst Struct 218:1–19. doi: 10.1524/ncrs.2003.218.3.313 Google Scholar
  35. 35.
    Jahn SF, Blaudeck T, Baumann RR et al (2010) Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands. Chem Mater 22:3067–3071. doi: 10.1021/cm9036428 CrossRefGoogle Scholar
  36. 36.
    Tuchscherer A, Schaarschmidt D, Schulze S et al (2012) Gold nanoparticles generated by thermolysis of “all-in-one” gold(i) carboxylate complexes. Dalton Trans 41:2738. doi: 10.1039/c2dt11748g CrossRefGoogle Scholar
  37. 37.
    Tuchscherer A, Schaarschmidt D, Schulze S et al (2011) Simple and efficient: gold nanoparticles from triphenylphosphane gold(I) carboxylates without addition of any further stabilizing and reducing agent. Inorg Chem Commun 14:676–678. doi: 10.1016/j.inoche.2011.02.003 CrossRefGoogle Scholar
  38. 38.
    Knop O, Reid KIG, Sutarno, Nakagawa Y (1968) Chalkogenides of the transition elements. VI. X-ray, neutron, and magnetic investigation of the spinels Co3O4, NiCo2O4, Co3S4, and NiCo2S4. Can J Chem 46:3463–3476CrossRefGoogle Scholar
  39. 39.
    Jankovský O, Sedmidubský D, Šimek P et al (2015) Synthesis of MnO, Mn2O3 and Mn3O4 nanocrystal clusters by thermal decomposition of manganese glycerolate. Ceram Int 41:595–601. doi: 10.1016/j.ceramint.2014.08.108 CrossRefGoogle Scholar
  40. 40.
    Donohue M, Aranovich G (1998) Classification of Gibbs adsorption isotherms. Adv Colloid Interface Sci 76–77:137–152. doi: 10.1016/S0001-8686(98)00044-X CrossRefGoogle Scholar
  41. 41.
    Sing KSW, Everett DH, Haul RAW et al (2008) Reporting physisorption data for gas/solid systems. In: Handbook of heterogeneous catalysis. Wiley, Weinheim, pp 603–619Google Scholar
  42. 42.
    Landers J, Gor GY, Neimark AV (2013) Density functional theory methods for characterization of porous materials. Colloids Surf A Physicochem Eng Asp 437:3–32. doi: 10.1016/j.colsurfa.2013.01.007 CrossRefGoogle Scholar
  43. 43.
    Wang GX, Chen Y, Konstantinov K et al (2002) Investigation of cobalt oxides as anode materials for Li-ion batteries. J Power Sources 109:142–147. doi: 10.1016/S0378-7753(02)00052-6 CrossRefGoogle Scholar
  44. 44.
    Zhang B, Zhang Y, Miao Z et al (2014) Micro/nano-structure Co3O4 as high capacity anode materials for lithium-ion batteries and the effect of the void volume on electrochemical performance. J Power Sources 248:289–295. doi: 10.1016/j.jpowsour.2013.09.074 CrossRefGoogle Scholar
  45. 45.
    Laruelle S, Grugeon S, Poizot P et al (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:A627. doi: 10.1149/1.1467947 CrossRefGoogle Scholar
  46. 46.
    Larcher D, Sudant G, Leriche J-B et al (2002) The electrochemical reduction of Co3O4 in a lithium cell. J Electrochem Soc 149:A234. doi: 10.1149/1.1435358 CrossRefGoogle Scholar
  47. 47.
    Wang F, Lu C, Qin Y et al (2013) Solid state coalescence growth and electrochemical performance of plate-like Co3O4 mesocrystals as anode materials for lithium-ion batteries. J Power Sources 235:67–73. doi: 10.1016/j.jpowsour.2013.01.190 CrossRefGoogle Scholar
  48. 48.
    Gruner W, Thomas J, Giebeler L et al (2011) Interactions of copper and iron in conversion reactions of nanosized oxides with large variations in iron–copper ratio. J Electrochem Soc 158:A1383. doi: 10.1149/2.069112jes CrossRefGoogle Scholar
  49. 49.
    Le Gall T, Reiman KH, Grossel MC, Owen JR (2003) Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries. J Power Sources 119–121:316–320. doi: 10.1016/S0378-7753(03)00167-8 CrossRefGoogle Scholar
  50. 50.
    Chen H, Armand M, Demailly G et al (2008) From biomass to a renewable LiXC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1:348–355. doi: 10.1002/cssc.200700161 CrossRefGoogle Scholar
  51. 51.
    Lee SW, Yabuuchi N, Gallant BM et al (2010) High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol 5:531–537. doi: 10.1038/nnano.2010.116 CrossRefGoogle Scholar
  52. 52.
    Varzi A, Täubert C, Wohlfahrt-Mehrens M (2012) The effects of pristine and carboxylated multi-walled carbon nanotubes as conductive additives on the performance of LiNi0.33Co0.33Mn0.33O2 and LiFePO4 positive electrodes. Electrochim Acta 78:17–26. doi: 10.1016/j.electacta.2012.05.127 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • K. Assim
    • 1
  • S. Schulze
    • 2
  • M. Pügner
    • 3
  • M. Uhlemann
    • 4
  • T. Gemming
    • 4
  • L. Giebeler
    • 4
  • M. Hietschold
    • 2
  • T. Lampke
    • 3
  • H. Lang
    • 1
  1. 1.Technische Universität Chemnitz, Faculty of Natural SciencesInstitute of Chemistry, Inorganic ChemistryChemnitzGermany
  2. 2.Technische Universität Chemnitz, Faculty of Natural SciencesInstitute of Physics, Solid Surface AnalysisChemnitzGermany
  3. 3.Technische Universität Chemnitz, Faculty of Mechanical EngineeringInstitute of Material Science and Engineering, Materials and Surface EngineeringChemnitzGermany
  4. 4.Leibniz Institute for Solid State and Materials Research Dresden e. V., IFW DresdenDresdenGermany

Personalised recommendations