Journal of Materials Science

, Volume 52, Issue 15, pp 9082–9090 | Cite as

Engineering the surface functionality of 45S5 bioactive glass-based scaffolds by the heterogeneous nucleation and growth of silver particles

  • Thomas Meincke
  • Valentina Miguez Pacheco
  • Daniel Hoffmann
  • Aldo R. BoccacciniEmail author
  • Robin N. Klupp TaylorEmail author
In Honor of Larry Hench


An emerging topic in the field of biomaterials is the incorporation of silver ions, metallic silver or silver oxides into bioactive glasses to impart novel functionalities. In this work, a new approach of surface functionalization of 45S5 bioactive glass (BG) is introduced. In contrast to more common methods, which are based on the inclusion of silver during the sol–gel synthesis of BG, our method allows the surface functionalization of BG powders and BG scaffolds after their preparation. Hereby, we demonstrate the transferability of a previously reported approach on the wet chemical synthesis of cup-like and dendritic silver patches first from colloidal silica particles to BG particles and further to macroscopic highly porous BG scaffolds which were prepared by the sacrificial foam replica technique. The time-dependent silver releases of BG scaffolds with different silver loadings into simulated body fluid (SBF) were measured. Further studies were addressed to investigate the bioactivity of BG scaffolds before and after the silver coating procedure. It was found the silver deposition on 3D BG scaffolds did not affect the formation of crystalline hydroxyapatite during immersion into simulated body fluid.


Simulated Body Fluid Heterogeneous Nucleation Bioactive Glass Silver Particle Silver Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Fabrizio-Zagros Sadafi for fruitful discussions and for financial support from the Cluster of Excellence “Engineering of Advanced Materials” which is funded by the German Research Foundation (DFG) within the framework of the German Federal and State Excellence Initiative. V. Miguez Pacheco and Aldo R. Boccaccini acknowledge the European Commission funding under the 7th Framework Programme (Marie Curie Initial Training Networks; Grant Number 289958, “Bioceramics for bone repair”).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2017_877_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1601 kb)


  1. 1.
    Hench LL (2015) Opening paper 2015- some comments on bioglass: four eras of discovery and development. Biomed Glass 1:1–11. doi: 10.1515/bglass-2015-0001 Google Scholar
  2. 2.
    Bretcanu O, Chatzistavrou X, Paraskevopoulos K, Conradt R, Thompson I, Boccaccini AR (2009) Sintering and crystallisation of 45S5 Bioglass® powder. J Eur Ceram Soc 29:3299–3306. doi: 10.1016/j.jeurceramsoc.2009.06.035 CrossRefGoogle Scholar
  3. 3.
    Bahniuk MS, Pirayesh H, Singh HD, Nychka JA, Unsworth LD (2012) Bioactive glass 45S5 powders: effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma. Biointerphases 7:1–15. doi: 10.1007/s13758-012-0041-y CrossRefGoogle Scholar
  4. 4.
    Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728. doi: 10.1111/j.1151-2916.1998.tb02540.x CrossRefGoogle Scholar
  5. 5.
    Kontonasaki E, Zorba T, Papadopoulou L, Pavlidou E, Chatzistavrou X, Paraskevopoulos K, Koidis P (2002) Hydroxy carbonate apatite formation on particulate bioglass in vitro as a function of time. Cryst Res Technol 37:1165–1171. doi: 10.1002/1521-4079(200211)37:11<1165:AID-CRAT1165>3.0.CO;2-R CrossRefGoogle Scholar
  6. 6.
    Chen QZ, Rezwan K, Armitage D, Nazhat SN, Boccaccini AR (2006) The surface functionalization of 45S5 Bioglass-based glass-ceramic scaffolds and its impact on bioactivity. J Mater Sci Mater Med 17:979–987. doi: 10.1007/s10856-006-0433-y CrossRefGoogle Scholar
  7. 7.
    Bretcanu O, Misra SK, Yunos DM, Boccaccini AR, Roy I, Kowalczyk T, Blonski S, Kowalewski TA (2009) Electrospun nanofibrous biodegradable polyester coatings on Bioglass®-based glass-ceramics for tissue engineering. Mater Chem Phys 118:420–426. doi: 10.1016/j.matchemphys.2009.08.011 CrossRefGoogle Scholar
  8. 8.
    Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27:2414–2425. doi: 10.1016/j.biomaterials.2005.11.025 CrossRefGoogle Scholar
  9. 9.
    Bellucci D, Cannillo V, Sola A, Chiellini F, Gazzarri M, Migone C (2011) Macroporous Bioglass®-derived scaffolds for bone tissue regeneration. Ceram Int 37:1575–1585. doi: 10.1016/j.ceramint.2011.01.023 CrossRefGoogle Scholar
  10. 10.
    Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:964–973. doi: 10.1016/j.biomaterials.2005.07.017 CrossRefGoogle Scholar
  11. 11.
    Jones JR, Ehrenfried LM, Saravanapavan P, Hench LL (2006) Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J Mater Sci Mater Med 17:989–996. doi: 10.1007/s10856-006-0434-x CrossRefGoogle Scholar
  12. 12.
    Fu Q, Rahaman MN, Bal BS, Brown RF (2010) Preparation and in vitro evaluation of bioactive glass (13–93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. J Biomed Mater Res. Part A 93A:1380–1390. doi: 10.1002/jbm.a.32637 CrossRefGoogle Scholar
  13. 13.
    Brauer DS (2015) Bioactive glasses-structure and properties. Angew Chem (International ed. in English) 54:4160–4181. doi: 10.1002/anie.201405310 CrossRefGoogle Scholar
  14. 14.
    Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373. doi: 10.1016/j.actbio.2011.03.016 CrossRefGoogle Scholar
  15. 15.
    Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774. doi: 10.1016/j.biomaterials.2011.01.004 CrossRefGoogle Scholar
  16. 16.
    Miguez Pacheco V, Büttner T, Maçon A, Jones JR, Fey T, de Ligny D, Greil P, Chevalier J, Malchere A, Boccaccini AR (2016) Development and characterization of lithium-releasing silicate bioactive glasses and their scaffolds for bone repair. J Non-Cryst Solids 432:65–72. doi: 10.1016/j.jnoncrysol.2015.03.027 CrossRefGoogle Scholar
  17. 17.
    Bellantone M, Williams HD, Hench LL (2002) Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46:1940–1945. doi: 10.1128/AAC.46.6.1940-1945.2002 CrossRefGoogle Scholar
  18. 18.
    Blaker JJ, Boccaccini AR, Nazhat SN (2005) Thermal characterizations of silver-containing bioactive glass-coated sutures. J Biomater Appl 20:81–98. doi: 10.1177/0885328205054264 CrossRefGoogle Scholar
  19. 19.
    Gargiulo N, Cusano AM, Causa F, Caputo D, Netti PA (2013) Silver-containing mesoporous bioactive glass with improved antibacterial properties. J Mater Sci Mater Med 24:2129–2135. doi: 10.1007/s10856-013-4968-4 CrossRefGoogle Scholar
  20. 20.
    Kozon D, Zheng K, Boccardi E, Liu Y, Liverani L, Boccaccini A (2016) synthesis of monodispersed Ag-doped bioactive glass nanoparticles via surface modification. Materials 9:225. doi: 10.3390/ma9040225 CrossRefGoogle Scholar
  21. 21.
    Magyari K, Gruian C, Varga B, Ciceo-Lucacel R, Radu T, Steinhoff H-J, Váró G, Simon V, Baia L (2014) Addressing the optimal silver content in bioactive glass systems in terms of BSA adsorption. J Mater Chem B 2:5799–5808. doi: 10.1039/c4tb00733f CrossRefGoogle Scholar
  22. 22.
    Magyari K, Stefan R, Vodnar DC, Vulpoi A, Baia L (2014) The silver influence on the structure and antibacterial properties of the bioactive 10B2O3–30Na2O–60P2O2 glass. J Non-Cryst Solids 402:182–186. doi: 10.1016/j.jnoncrysol.2014.05.033 CrossRefGoogle Scholar
  23. 23.
    Newby PJ, El-Gendy R, Kirkham J, Yang XB, Thompson ID, Boccaccini AR (2011) Ag-doped 45S5 Bioglass®-based bone scaffolds by molten salt ion exchange: processing and characterisation. J Mater Sci Mater Med 22:557–569. doi: 10.1007/s10856-011-4240-8 CrossRefGoogle Scholar
  24. 24.
    Hoppe A, Meszaros R, Stähli C, Romeis S, Schmidt J, Peukert W, Marelli B, Nazhat SN, Wondraczek L, Lao J, Jallot E, Boccaccini AR (2013) In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. J Mater Chem B 1:5659–5674. doi: 10.1039/c3tb21007c CrossRefGoogle Scholar
  25. 25.
    Milkovic L, Hoppe A, Detsch R, Boccaccini AR, Zarkovic N (2014) Effects of Cu-doped 45S5 bioactive glass on the lipid peroxidation-associated growth of human osteoblast-like cells in vitro. J Biomed Mater Res Part A 102:3556–3561. doi: 10.1002/jbm.a.35032 CrossRefGoogle Scholar
  26. 26.
    Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34:422–433. doi: 10.1016/j.biomaterials.2012.09.066 CrossRefGoogle Scholar
  27. 27.
    Bellantone M, Coleman NJ, Hench LL (2000) Bacteriostatic action of a novel four-component bioactive glass. J Biomed Mater Res 51:484–490. doi: 10.1002/1097-4636(20000905)51:3<484:AID-JBM24>3.0.CO;2-4 CrossRefGoogle Scholar
  28. 28.
    Blaker JJ, Nazhat SN, Boccaccini AR (2004) Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials 25:1319–1329. doi: 10.1016/j.biomaterials.2003.08.007 CrossRefGoogle Scholar
  29. 29.
    Delben JRJ, Pimentel OM, Coelho MB, Candelorio PD, Furini LN, Alencar dos Santos F, de Vicente FS, Delben AAST (2009) Synthesis and thermal properties of nanoparticles of bioactive glasses containing silver. J Therm Anal Calorim 97:433. doi: 10.1007/s10973-009-0086-4 CrossRefGoogle Scholar
  30. 30.
    Goli KK, Gera N, Liu X, Rao BM, Rojas OJ, Genzer J (2013) Generation and properties of antibacterial coatings based on electrostatic attachment of silver nanoparticles to protein-coated polypropylene fibers. ACS Appl Mater Interfaces 5:5298–5306. doi: 10.1021/am4011644 CrossRefGoogle Scholar
  31. 31.
    Tai Y, Xu C, Chen H (2016) Silver-coated glass fabric composites prepared by electroless plating. Mater Lett 180:144–147. doi: 10.1016/j.matlet.2016.05.118 CrossRefGoogle Scholar
  32. 32.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. doi: 10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  33. 33.
    Bao H, Peukert W, Klupp Taylor RK (2011) One-pot colloidal synthesis of plasmonic patchy particles. Adv Mater (Deerfield Beach, Fla.) 23:2644–2649. doi: 10.1002/adma.201100698 CrossRefGoogle Scholar
  34. 34.
    Meincke T, Bao H, Pflug L, Stingl M, Klupp Taylor RN (2016) Heterogeneous nucleation and surface conformal growth of silver nanocoatings on colloidal silica in a continuous flow static T-mixer. Chem Eng J 308:89–100. doi: 10.1016/j.cej.2016.09.048 CrossRefGoogle Scholar
  35. 35.
    Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017 CrossRefGoogle Scholar
  36. 36.
    Cattini A, Bellucci D, Sola A, Pawłowski L, Cannillo V (2014) Functional bioactive glass topcoats on hydroxyapatite coatings: analysis of microstructure and in vitro bioactivity. Surf Coat Technol 240:110–117. doi: 10.1016/j.surfcoat.2013.12.023 CrossRefGoogle Scholar
  37. 37.
    Paiva AO, Duarte MG, Fernandes MHV, Gil MH, Costa NG (2006) In vitro studies of bioactive glass/polyhydroxybutyrate composites. Mater Res 9:417–423. doi: 10.1590/S1516-14392006000400013 CrossRefGoogle Scholar
  38. 38.
    Serra J, González P, Liste S, Serra C, Chiussi S, León B, Pérez-Amor M, Ylänen HO, Hupa M (2003) FTIR and XPS studies of bioactive silica based glasses. J Non-Cryst Solids 332:20–27. doi: 10.1016/j.jnoncrysol.2003.09.013 CrossRefGoogle Scholar
  39. 39.
    Chatzistavrou X, Zorba T, Kontonasaki E, Chrissafis K, Koidis P, Paraskevopoulos KM (2004) Following bioactive glass behavior beyond melting temperature by thermal and optical methods. Phys Status Solidi (a) 201:944–951. doi: 10.1002/pssa.200306776 CrossRefGoogle Scholar
  40. 40.
    Benesi HA, Jones AC (1959) An infrared study of the water-silica gel system. J Phys Chem 63:179–182. doi: 10.1021/j150572a012 CrossRefGoogle Scholar
  41. 41.
    Burneau A, Barres O, Gallas JP, Lavalley JC (1990) Comparative study of the surface hydroxyl groups of fumed and precipitated silicas. 2. Characterization by infrared spectroscopy of the interactions with water. Langmuir 6:1364–1372. doi: 10.1021/la00098a008 CrossRefGoogle Scholar
  42. 42.
    Gallas JP, Lavalley JC, Burneau A, Barres O (1991) Comparative study of the surface hydroxyl groups of fumed and precipitated silicas. 4. Infrared study of dehydroxylation by thermal treatments. Langmuir 7:1235–1240. doi: 10.1021/la00054a036 CrossRefGoogle Scholar
  43. 43.
    Macon ALB, Kim TB, Valliant EM, Goetschius K, Brow RK, Day DE, Hoppe A, Boccaccini AR, Kim IY, Ohtsuki C, Kokubo T, Osaka A, Vallet-Regi M, Arcos D, Fraile L, Salinas AJ, Teixeira AV, Vueva Y, Almeida RM, Miola M, Vitale-Brovarone C, Verne E, Holand W, Jones JR (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10. doi: 10.1007/s10856-015-5403-9 CrossRefGoogle Scholar
  44. 44.
    Berzina-Cimdina L, Borodajenko N (2012) Research of calcium phosphates using Fourier transform infrared spectroscopy. In: Theophanides TM (ed) Infrared spectroscopy—materials science, engineering and technology. Rijeka, InTechGoogle Scholar
  45. 45.
    Goh Y-F, Alshemary AZ, Akram M, Abdul Kadir MR, Hussain R (2014) Bioactive glass: an in-vitro comparative study of doping with nanoscale copper and silver particles. Int J Appl Glass Sci 5:255–266. doi: 10.1111/ijag.12061 CrossRefGoogle Scholar
  46. 46.
    Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30:2175–2179. doi: 10.1016/j.biomaterials.2009.01.008 CrossRefGoogle Scholar
  47. 47.
    Romeis S, Paul J, Hanisch M, Marthala VRR, Hartmann M, Klupp Taylor RN, Schmidt J, Peukert W (2014) Correlation of enhanced strength and internal structure for heat-treated submicron Stöber silica particles. Part Part Syst Charact 31:664–674. doi: 10.1002/ppsc.201300306 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of Particle TechnologyFAU Erlangen-NürnbergErlangenGermany
  2. 2.Institute of BiomaterialsFAU Erlangen-NürnbergErlangenGermany
  3. 3.Interdisciplinary Center for Functional Particle SystemsFAU Erlangen-NürnbergErlangenGermany

Personalised recommendations