Journal of Materials Science

, Volume 52, Issue 15, pp 8845–8857 | Cite as

Cerium-doped bioactive 45S5 glasses: spectroscopic, redox, bioactivity and biocatalytic properties

  • Valentina Nicolini
  • Gianluca Malavasi
  • Ledi Menabue
  • Gigliola Lusvardi
  • Francesco Benedetti
  • Sergio Valeri
  • Paola Luches
In Honor of Larry Hench

Abstract

The ability of Ce-containing bioactive glasses, based on 45S5 Bioglass®, to inhibit oxidative stress in terms of reduction in hydrogen peroxide and superoxide (O2), by mimicking the catalase and superoxide dismutase activity is reported in this work. The characterization is performed on the powders of pristine glasses and after the soaking in H2O2 solutions and simulated body fluid. The glass samples are analysed by XPS, XRD, UV–Vis and FT-IR. The best catalyst activities are obtained for the glass with the highest content of cerium (H_5.3 = 5.3 mol% of CeO2 in the nominal glass composition), and the best Ce3+/Ce4+ ratio in terms of catalase mimetic activity is found to be a function of H2O2 concentration. Moreover, the detailed study of the surface during the mimic enzymatic activity tests shows the formation of a Ca-P-rich layer on the glass surface, where the presence of Ce ions favours the formation of CePO4. The phosphate in turn inhibits the formation of hydroxyapatite, decreasing the bioactivity of the glass with the highest of CeO2 in the glass composition. This work shows the effect of Ce3+/Ce4+ ratio towards the catalase mimetic activity and for the first time the superoxide dismutase mimetic activity of Ce-containing 45S5-derived glasses.

Supplementary material

10853_2017_867_MOESM1_ESM.docx (881 kb)
Supplementary material 1 (DOCX 881 kb)

References

  1. 1.
    Hench LL (1993) An introduction to bioceramics. World Scientific, SingaporeCrossRefGoogle Scholar
  2. 2.
    Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32:2757–2774. doi:10.1016/j.biomaterials.2011.01.004 CrossRefGoogle Scholar
  3. 3.
    Gerhardt L-C, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910. doi:10.3390/ma3073867 CrossRefGoogle Scholar
  4. 4.
    Marie PJ (2006) Strontium ranelate: a physiological approach for optimizing bone formation and resorption. Bone 38:S10–S14. doi:10.1016/j.bone.2005.07.029 CrossRefGoogle Scholar
  5. 5.
    Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69:121–129CrossRefGoogle Scholar
  6. 6.
    Zreiqat H, Howlett CR, Zannettino A et al (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 62:175–184. doi:10.1002/jbm.10270 CrossRefGoogle Scholar
  7. 7.
    Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119–135. doi:10.1002/(SICI)1520-670X(1998)11:2/3<119:AID-JTRA5>3.0.CO;2-3 CrossRefGoogle Scholar
  8. 8.
    Palza H, Escobar B, Bejarano J et al (2013) Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method. Mater Sci Eng C 33:3795–3801. doi:10.1016/j.msec.2013.05.012 CrossRefGoogle Scholar
  9. 9.
    Liu J, Rawlinson SCF, Hill RG, Fortune F (2016) Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects. Dent Mater 32:412–422. doi:10.1016/j.dental.2015.12.013 CrossRefGoogle Scholar
  10. 10.
    Gholipourmalekabadi M, Sameni M, Hashemi A et al (2016) Silver- and fluoride-containing mesoporous bioactive glasses versus commonly used antibiotics: activity against multidrug-resistant bacterial strains isolated from patients with burns. Burns 42:131–140. doi:10.1016/j.burns.2015.09.010 CrossRefGoogle Scholar
  11. 11.
    Newby PJ, El-Gendy R, Kirkham J et al (2011) Ag-doped 45S5 Bioglass®-based bone scaffolds by molten salt ion exchange: processing and characterisation. J Mater Sci Mater Med 22:557–569. doi:10.1007/s10856-011-4240-8 CrossRefGoogle Scholar
  12. 12.
    Nicolini V, Gambuzzi E, Malavasi G et al (2015) Evidence of catalase mimetic activity in Ce 3+/Ce 4+ doped bioactive glasses. J Phys Chem B 119:4009–4019. doi:10.1021/jp511737b CrossRefGoogle Scholar
  13. 13.
    Nicolini V, Varini E, Malavasi G et al (2016) The effect of composition on structural, thermal, redox and bioactive properties of Ce-containing glasses. Mater Des 97:73–85. doi:10.1016/j.matdes.2016.02.056 CrossRefGoogle Scholar
  14. 14.
    Kolthoff IM (1969) Quantitative chemical analysis. Macmillan, LondonGoogle Scholar
  15. 15.
    Singh S, Dosani T, Karakoti AS et al (2011) A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 32:6745–6753. doi:10.1016/j.biomaterials.2011.05.073 CrossRefGoogle Scholar
  16. 16.
    McCormack RN, Mendez P, Barkam S et al (2014) Inhibition of nanoceria’s catalytic activity due to Ce3 + site-specific interaction with phosphate ions. J Phys Chem C 118:18992–19006. doi:10.1021/jp500791j CrossRefGoogle Scholar
  17. 17.
    Swift P (1982) Adventitious carbon—the panacea for energy referencing? Surf Interface Anal 4:47–51. doi:10.1002/sia.740040204 CrossRefGoogle Scholar
  18. 18.
    Wagner CD, Muilenberg GE (1979) Handbook of x-ray photoelectron spectroscopy: a reference book of standard data for use in X-ray photoelectron spectroscopy. Physical Electronics Division, Perkin-Elmer Corp, Eden PrairieGoogle Scholar
  19. 19.
    Karakoti A, Singh S, Dowding JM et al (2010) Redox-active radical scavenging nanomaterials. Chem Soc Rev 39:4422. doi:10.1039/b919677n CrossRefGoogle Scholar
  20. 20.
    Pirmohamed T, Dowding JM, Singh S et al (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 46:2736. doi:10.1039/b922024k CrossRefGoogle Scholar
  21. 21.
    Karakoti AS, Singh S, Kumar A et al (2009) pegylated nanoceria as radical scavenger with tunable redox chemistry. J Am Chem Soc 131:14144–14145. doi:10.1021/ja9051087 CrossRefGoogle Scholar
  22. 22.
    Ukeda H, Kawana D, Maeda S, Sawamura M (1999) Spectrophotometric assay for superoxide dismutase based on the reduction of highly water-soluble tetrazolium salts by xanthine–xanthine oxidase. Biosci Biotechnol Biochem 63:485–488. doi:10.1271/bbb.63.485 CrossRefGoogle Scholar
  23. 23.
    Maçon ALB, Kim TB, Valliant EM et al (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med. doi:10.1007/s10856-015-5403-9 Google Scholar
  24. 24.
    Schumb WC, Satterfield CN, Wentworth RL (1956) Hydrogen peroxide, A. C. S. Monograph No. 128. Reinhold Publishing Corporation, New YorkGoogle Scholar
  25. 25.
    Lee SS, Song W, Cho M et al (2013) Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7:9693–9703. doi:10.1021/nn4026806 CrossRefGoogle Scholar
  26. 26.
    Doremus RH (1975) Interdiffusion of hydrogen and alkali ions in a glass surface. J Non-Cryst Sol 19:137–144. doi:10.1016/0022-3093(75)90079-4 CrossRefGoogle Scholar
  27. 27.
    Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117–141. doi:10.1002/jbm.820050611 CrossRefGoogle Scholar
  28. 28.
    Vallet-Regí M, Izquierdo-Barba I, Salinas AJ (1999) Influence of P2O5 on crystallinity of apatite formed in vitro on surface of bioactive glasses. J Biomed Mater Res 46:560–565. doi:10.1002/(SICI)1097-4636(19990915)46:4<560:AID-JBM14>3.0.CO;2-M CrossRefGoogle Scholar
  29. 29.
    Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, 6th edn. Wiley, HobokenGoogle Scholar
  30. 30.
    Leonelli C, Lusvardi G, Malavasi G et al (2003) Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. J Non-Cryst Sol 316:198–216. doi:10.1016/S0022-3093(02)01628-9 CrossRefGoogle Scholar
  31. 31.
    Heckert EG, Karakoti AS, Seal S, Self WT (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29:2705–2709. doi:10.1016/j.biomaterials.2008.03.014 CrossRefGoogle Scholar
  32. 32.
    Yu P, Hayes SA, O’Keefe TJ et al (2006) The phase stability of cerium species in aqueous systems II. The systems. Equilibrium considerations and pourbaix diagram calculations. J Electrochem Soc 153:C74–C79. doi:10.1149/1.2130572 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemical and Geological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
  2. 2.Department of Physics, Informatics and MathematicsUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Istituto Nanoscienze-CNRModenaItaly

Personalised recommendations