Advertisement

Journal of Materials Science

, Volume 52, Issue 10, pp 6093–6099 | Cite as

Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin films

  • Hua Jin
  • Giovanni Marin
  • Ashutosh Giri
  • Tommi Tynell
  • Marie Gestranius
  • Benjamin P. Wilson
  • Eero Kontturi
  • Tekla Tammelin
  • Patrick E. Hopkins
  • Maarit Karppinen
Original Paper

Abstract

Utilizing a combination of atomic layer deposition and dip-coating techniques, we have incorporated natural nanocellulose fibers into an inorganic matrix in order to create a layered hybrid inorganic–organic thin-film structure. Such layer-engineered hybrid materials with an unorthodox combination of components are highly potential candidates for exciting new properties. Here, we show a more than an order of magnitude reduction in the cross-plane thermal conductivity for ZnO thin films achieved with the regular inclusion of the cellulose nanofiber layers. We foresee that a similar approach as presented here for ZnO could also be applied to other inorganic materials based on earth-abundant elements to influence their thermal transport properties.

Keywords

Atomic Layer Deposition Hybrid Film Layered Hybrid Cellulose Nanofibers Hybrid Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The present work has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Advanced Grant Agreement (No. 339478) and ERC Proof-of-Concept Grant Agreement (No. 712738), Academy of Finland (Nos. 259500, 292431, 303452), the Aalto School of Chemical Technology—VTT Forest Meets Chemistry Programme and from the United States Army Research Office (No. W911NF-16-1-0320).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2017_848_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 32 kb)

References

  1. 1.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466CrossRefGoogle Scholar
  2. 2.
    Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRefGoogle Scholar
  3. 3.
    Lee K-Y, Aitomäki Y, Berglund LA, Oksman K, Bismarck A (2014) On the use of nanocellulose as reinforcement in polymer matrix composites. Compos Sci Technol 105:15–27CrossRefGoogle Scholar
  4. 4.
    McKee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O (2014) Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24:2706–2713CrossRefGoogle Scholar
  5. 5.
    Hakalahti M, Mautner A, Johansson L-S, Hänninen T, Setälä H, Kontturi E, Bismarck A, Tammelin T (2016) Direct interfacial modification of nanocellulose films for thermoresponsive membrane templates. ACS Appl Mater Interfaces 8:2923–2927CrossRefGoogle Scholar
  6. 6.
    Ye C, Malak ST, Hu K, Wu W, Tsukruk VV (2015) Cellulose nanocrystal microcapsules as tunable cages for nano- and microparticles. ACS Nano 9:10887–10895CrossRefGoogle Scholar
  7. 7.
    Schyrr B, Pasche S, Voirin G, Weder C, Simon YC, Foster EJ (2014) Biosensors based on porous cellulose nanocrystal-poly(vinyl alcohol) scaffolds. ACS Appl Mater Interfaces 6:12674–12683CrossRefGoogle Scholar
  8. 8.
    Wang J, Cheng Q, Jiang L (2014) Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano 8:2739–2745CrossRefGoogle Scholar
  9. 9.
    Olsson RT, Azizi Samir MAS, Salazar-Alvarez G, Belova L, Ström V, Berglund LA, Ikkala O, Nogues J, Gedde UW (2010) Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nature Nanotechnol 5:584–588CrossRefGoogle Scholar
  10. 10.
    Chen M, Kang H, Gong Y, Guo J, Zhang H, Liu R (2015) Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl Mater Interfaces 7:21717–21726CrossRefGoogle Scholar
  11. 11.
    Chen G (1998) Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B 57(23):14958–14973CrossRefGoogle Scholar
  12. 12.
    Giri A, Niemelä J-P, Tynell T, Gaskins JT, Donovan BF, Karppinen M, Hopkins PE (2016) Heat-transport mechanisms in molecular building blocks of inorganic/organic hybrid superlattices. Phys Rev B 93:115310CrossRefGoogle Scholar
  13. 13.
    Giri A, Niemelä J-P, Szwejkowski CJ, Karppinen M, Hopkins PE (2016) Reduction in thermal conductivity and tunable heat capacity of inorganic/organic hybrid superlattices. Phys Rev B 93:024201CrossRefGoogle Scholar
  14. 14.
    Niemelä J-P, Giri A, Hopkins PE, Karppinen M (2015) Ultra-low thermal conductivity in TiO2: C superlattices. J Mater Chem A 3:11527–11532CrossRefGoogle Scholar
  15. 15.
    Hänninen T, Orelma H, Laine J (2015) TEMPO oxidized cellulose thin films analysed by QCM-D and AFM. Cellulose 22:165–171CrossRefGoogle Scholar
  16. 16.
    Qi Z-D, Saito T, Fan Y, Isogai A (2012) Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils. Biomacromolecules 13:553–558CrossRefGoogle Scholar
  17. 17.
    Yoon B, Lee BH, George SM (2012) Highly conductive and transparent hybrid organic–inorganic zincone thin films using atomic and molecular layer deposition. J Phys Chem C 116:24784–24791CrossRefGoogle Scholar
  18. 18.
    Tynell T, Terasaki I, Yamauchi H, Karppinen M (2013) Thermoelectric characteristics of (Zn, Al)O/hydroquinone superlattices. J Mater Chem A 1:13619–13624CrossRefGoogle Scholar
  19. 19.
    Tynell T, Giri A, Gaskins J, Hopkins PE, Mele P, Miyazaki K, Karppinen M (2014) Efficiently suppressed thermal conductivity in ZnO thin films via periodic introduction of organic layers. J Mater Chem A 2:12150–12152CrossRefGoogle Scholar
  20. 20.
    Wan C, Gu X, Dang F, Itoh T, Wang Y, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder GJ, Yang R, Koumoto K (2015) Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat Mater 14:622–627CrossRefGoogle Scholar
  21. 21.
    Karttunen AJ, Tynell T, Karppinen M (2016) Layer-by-layer design of nanostructured thermoelectrics: first-principles study of ZnO: organic superlattices fabricated by ALD/MLD. Nano Energy 22:338–348CrossRefGoogle Scholar
  22. 22.
    Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114CrossRefGoogle Scholar
  23. 23.
    George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131CrossRefGoogle Scholar
  24. 24.
    George SM, Yoon B, Dameron AA (2009) Surface chemistry for molecular layer deposition of organic and hybrid organic–inorganic polymers. Acc Chem Res 42(4):498–508CrossRefGoogle Scholar
  25. 25.
    Sundberg P, Karppinen M (2014) Organic and inorganic–organic thin film structures by molecular layer deposition: A review. Beilstein J Nanotechnol 5:1104–1136CrossRefGoogle Scholar
  26. 26.
    Gregorczyk K, Knez M (2016) Hybrid nanomaterials through molecular and atomic layer deposition: top down, bottom up, and in-between approaches to new materials. Prog Mater Sci 75:1–37CrossRefGoogle Scholar
  27. 27.
    Tynell T, Yamauchi H, Karppinen M (2014) Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition. J Vac Sci Technol A 32(1):01A105CrossRefGoogle Scholar
  28. 28.
    Degen A, Kosec M (2000) Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J Eur Ceram Soc 20:667–673CrossRefGoogle Scholar
  29. 29.
    Alvarez-Quintana J, Martínez E, Pérez-Tijerina E, Pérez-Garcia SA, Rodríguez-Viejo J (2010) Temperature dependent thermal conductivity of polycrystalline ZnO films. J Appl Phys 107:063713CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Hua Jin
    • 1
  • Giovanni Marin
    • 1
  • Ashutosh Giri
    • 2
  • Tommi Tynell
    • 1
  • Marie Gestranius
    • 3
  • Benjamin P. Wilson
    • 4
  • Eero Kontturi
    • 4
  • Tekla Tammelin
    • 3
  • Patrick E. Hopkins
    • 2
  • Maarit Karppinen
    • 1
  1. 1.Department of Chemistry and Materials ScienceAalto UniversityAaltoFinland
  2. 2.Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleUSA
  3. 3.VTT Technical Research Centre of FinlandEspooFinland
  4. 4.Department of Bioproducts and BiosystemsAalto UniversityAaltoFinland

Personalised recommendations