Journal of Materials Science

, Volume 52, Issue 10, pp 5938–5953 | Cite as

Structural and electronic properties of screen-printed Fe2O3/TiO2 thick films and their photoelectrochemical behavior

  • Obrad S. Aleksić
  • Zorka Ž. Vasiljević
  • Milica Vujković
  • Marko Nikolić
  • Nebojša Labus
  • Miloljub D. Luković
  • Maria V. Nikolić
Original Paper


Nanostructured Fe2TiO5 thick films were deposited on fluorine-doped tin oxide glass substrate using screen printing technology. Starting hematite and anatase nanopowders were mixed in molar ratios 1:1 and 1:1.5 and calcined in air at 900°C for 2 h to form pseudobrookite, Fe2TiO5. Functional powders and sintered thick films were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy and transmission electron microscopy. UV–Vis analysis enabled determination of the band gap. Separation and transfer efficiency of photogenerated charge carriers was confirmed by the photoluminescence and electrochemical impedance spectra. Even though a slightly high onset oxygen evolution potential of photoexcited film electrode samples in NaOH was obtained, photocurrent densities were high, especially in the presence of H2O2 (~12 mA cm−2 at 1.7 V RHE). This work shows promise for practical application due to favorable band positions of pseudobrookite and low-cost screen printing technology.


Rutile Hematite Constant Phase Element Equivalent Circuit Model Photocurrent Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to express their gratitude to Dr. M. Mitrić for XRD measurements and Dr. Vladimir B. Pavlović for TEM measurements. This work was performed as part of projects III45007 and III45014 financed by the Ministry for Education, Science and Technological Development of the Republic of Serbia.


  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. doi: 10.1038/238037a0 CrossRefGoogle Scholar
  2. 2.
    Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28. doi: 10.1021/nl051807y CrossRefGoogle Scholar
  3. 3.
    Wang H, Lindgren T, He J et al (2000) Photolelectrochemistry of nanostructured WO3 thin film electrodes for water oxidation: mechanism of electron transport. J Phys Chem B 104:5686–5696. doi: 10.1021/jp0002751 CrossRefGoogle Scholar
  4. 4.
    Ahn K-S, Yan Y, Lee S-H et al (2007) Photoelectrochemical properties of N-incorporated ZnO films deposited by reactive RF magnetron sputtering. J Electrochem Soc 154:B956–B959. doi: 10.1149/1.2754074 CrossRefGoogle Scholar
  5. 5.
    Ahn K-S, Shet S, Deutsch T et al (2008) Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films. J Power Sources 176:387–392. doi: 10.1016/j.jpowsour.2007.10.034 CrossRefGoogle Scholar
  6. 6.
    Li C, Fan W, Lu H et al (2016) Fabrication of Au@CdS/RGO/TiO2 heterostructure for photoelectrochemical hydrogen production. New J Chem 40:2287–2295. doi: 10.1039/C5NJ03307A CrossRefGoogle Scholar
  7. 7.
    Kuang S, Yang L, Luo S, Cai Q (2009) Fabrication, characterization and photoelectrochemical properties of Fe2O3 modified TiO2 nanotube arrays. Appl Surf Sci 255:7385–7388. doi: 10.1016/j.apsusc.2009.04.005 CrossRefGoogle Scholar
  8. 8.
    Kumar P, Sharma P, Shrivastav R et al (2011) Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int J Hydrog Energy 36:2777–2784. doi: 10.1016/j.ijhydene.2010.11.107 CrossRefGoogle Scholar
  9. 9.
    Sivula K, Zboril R, Le Formal F et al (2010) Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J Am Chem Soc 132:7436–7444. doi: 10.1021/ja101564f CrossRefGoogle Scholar
  10. 10.
    Cesar I, Kay A, Gonzalez Martinez JA, Grätzel M (2006) Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of si-doping. J Am Chem Soc 128:4582–4583. doi: 10.1021/ja060292p CrossRefGoogle Scholar
  11. 11.
    Wodka D, Socha RP, Bielańska E et al (2014) Photocatalytic activity of titanium dioxide modified by Fe2O3 nanoparticles. Appl Surf Sci 319:173–180. doi: 10.1016/j.apsusc.2014.08.010 CrossRefGoogle Scholar
  12. 12.
    Ling Y, Wang G, Wheeler DA et al (2011) Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett 11:2119–2125. doi: 10.1021/nl200708y CrossRefGoogle Scholar
  13. 13.
    Sharma D, Upadhyay S, Verma A et al (2015) Nanostructured Ti-Fe2O3/Cu2O heterojunction photoelectrode for efficient hydrogen production. Thin Solid Films 574:125–131. doi: 10.1016/j.tsf.2014.12.003 CrossRefGoogle Scholar
  14. 14.
    Neufeld O, Toroker MC (2015) Platinum-doped α-Fe2O3 for enhanced water splitting efficiency: a DFT+ U Study. J Phys Chem C 119:5836–5847. doi: 10.1021/jp512002f CrossRefGoogle Scholar
  15. 15.
    Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294–2320. doi: 10.1039/C2CS35266D CrossRefGoogle Scholar
  16. 16.
    Kim JY, Magesh G, Youn DH et al (2013) Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci Rep. doi: 10.1038/srep02681 Google Scholar
  17. 17.
    Im JS, Lee SK, Lee Y-S (2011) Cocktail effect of Fe2O3 and TiO2 semiconductors for a high performance dye-sensitized solar cell. Appl Surf Sci 257:2164–2169. doi: 10.1016/j.apsusc.2010.09.066 CrossRefGoogle Scholar
  18. 18.
    Barreca D, Carraro G, Gasparotto A et al (2015) Fe2O3–TiO2 Nano-heterostructure photoanodes for highly efficient solar water oxidation. Adv Mater Interfaces 2:1500313. doi: 10.1002/admi.201500313 CrossRefGoogle Scholar
  19. 19.
    Li X, Yu J, Low J et al (2015) Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A 3:2485–2534. doi: 10.1039/C4TA04461D CrossRefGoogle Scholar
  20. 20.
    Aroutiounian VM, Arakelyan VM, Shahnazaryan GE et al (2006) Photoelectrochemistry of semiconductor electrodes made of solid solutions in the system Fe2O3–Nb2O5. Sol Energy 80:1098–1111. doi: 10.1016/j.solener.2005.10.005 CrossRefGoogle Scholar
  21. 21.
    Danzfuss B, Stimming U (1984) Iron(III)-titanium(IV)-oxide electrodes: their structural, electrochemical and photoelectrochemical properties. J Electroanal Chem 164:89–119. doi: 10.1016/S0022-0728(84)80233-8 CrossRefGoogle Scholar
  22. 22.
    Monllor-Satoca D, Bärtsch M, Fàbrega C et al (2015) What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes. Energy Environ Sci 8:3242–3254. doi: 10.1039/C5EE01679G CrossRefGoogle Scholar
  23. 23.
    Bassi PS, Chiam SY, Gurudayal et al (2014) Hydrothermal grown nanoporous iron based titanate, Fe2TiO5 for light driven water splitting. ACS Appl Mater Interfaces 6:22490–22495. doi: 10.1021/am5065574 CrossRefGoogle Scholar
  24. 24.
    Liu Q, He J, Yao T et al (2014) Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat Commun 5:5122. doi: 10.1038/ncomms6122 CrossRefGoogle Scholar
  25. 25.
    Deng J, Lv X, Liu J et al (2015) Thin-layer Fe2TiO5 on hematite for efficient solar water oxidation. ACS Nano 9:5348–5356. doi: 10.1021/acsnano.5b01028 CrossRefGoogle Scholar
  26. 26.
    Bassi PS, Antony RP, Boix PP et al (2016) Crystalline Fe2O3/Fe2TiO5 heterojunction nanorods with efficient charge separation and hole injection as photoanode for solar water oxidation. Nano Energy 22:310–318. doi: 10.1016/j.nanoen.2016.02.013 CrossRefGoogle Scholar
  27. 27.
    Carotta MC, Ferroni M, Guidi V, Martinelli G (1999) Preparation and characterization of nanostructured titania thick films. Adv Mater 11:943–946. doi: 10.1002/(SICI)1521-4095(199908)11:11<943:AID-ADMA943>3.0.CO;2-L CrossRefGoogle Scholar
  28. 28.
    Kamble RB, Mathe VL (2008) Nanocrystalline nickel ferrite thick film as an efficient gas sensor at room temperature. Sens Actuators B Chem 131:205–209. doi: 10.1016/j.snb.2007.11.003 CrossRefGoogle Scholar
  29. 29.
    Lee WJ, Shinde PS, Go GH, Ramasamy E (2011) Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation. Int J Hydrog Energy 36:5262–5270. doi: 10.1016/j.ijhydene.2011.02.013 CrossRefGoogle Scholar
  30. 30.
    Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS) Los Alamos National Laboratory Report LAUR 86-748Google Scholar
  31. 31.
    Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  32. 32.
    Tiedemann P, Mueller-Buschbaum H (1982) Zum Problem der Metallverteilung in Pseudobrookiten: FeAlTiO5 und Fe2TiO5. ZAAC Z Anorg Allg Chem 494:98–102. doi: 10.1002/zaac.19824940112 CrossRefGoogle Scholar
  33. 33.
    Drofenik M, Golič L, Hanžel D et al (1981) A new monoclinic phase in the Fe2O3-TiO2 system. I. Structure determination and Mössbauer spectroscopy. J Solid State Chem 40:47–51. doi: 10.1016/0022-4596(81)90359-5 CrossRefGoogle Scholar
  34. 34.
    Guo WQ, Malus S, Ryan DH, Altounian Z (1999) Crystal structure and cation distributions in the FeTi2O5-Fe2TiO5 solid solution series. J Phys Condens Matter 11:6337–6346. doi: 10.1088/0953-8984/11/33/304 CrossRefGoogle Scholar
  35. 35.
    Djuric ZZ, Aleksic OS, Nikolic MV et al (2014) Structural and electrical properties of sintered Fe2O3/TiO2 nanopowder mixtures. Ceram Int 40:15131–15141. doi: 10.1016/j.ceramint.2014.06.126 CrossRefGoogle Scholar
  36. 36.
    Seitz G, Penin N, Decoux L et al (2016) Near the ferric pseudobrookite composition (Fe2TiO5). Inorg Chem 55:2499–2507. doi: 10.1021/acs.inorgchem.5b02847 CrossRefGoogle Scholar
  37. 37.
    Weibel A, Bouchet R, Boulc’ F, Knauth P (2005) The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders. Chem Mater 17:2378–2385. doi: 10.1021/cm0403762 CrossRefGoogle Scholar
  38. 38.
    Tauc J, Menth A, Wood DL (1970) Optical and magnetic investigations of the localized states in semiconducting glasses. Phys Rev Lett 25:749–752. doi: 10.1103/PhysRevLett.25.749 CrossRefGoogle Scholar
  39. 39.
    Alcántara R, Navas J, Fernández-Lorenzo C et al (2011) Synthesis and Raman spectroscopy study of TiO2 nanoparticles. Phys Status Solidi (c) 8:1970–1973. doi: 10.1002/pssc.201000319 CrossRefGoogle Scholar
  40. 40.
    Courtin E, Baldinozzi G, Sougrati MT et al (2014) New Fe2TiO5-based nanoheterostructured mesoporous photoanodes with improved visible light photoresponses. J Mater Chem A 2:6567. doi: 10.1039/c4ta00102h CrossRefGoogle Scholar
  41. 41.
    Verma N, Singh S, Srivastava R, Yadav BC (2014) Fabrication of iron titanium oxide thin film and its application as opto-electronic humidity and liquefied petroleum gas sensors. Opt Laser Technol 57:181–188. doi: 10.1016/j.optlastec.2013.10.007 CrossRefGoogle Scholar
  42. 42.
    Vasiljevic ZZ, Lukovic MD, Nikolic MV et al (2015) Nanostructured Fe2O3/TiO2 thick films: analysis of structural and electronic properties. Ceram Int 41:6889–6897. doi: 10.1016/j.ceramint.2015.01.141 CrossRefGoogle Scholar
  43. 43.
    Zhang Z (2008) Optical properties and spectroscopy of nanomaterials. World Scientific Publishing Co. Pte. Ltd, SingaporeGoogle Scholar
  44. 44.
    Flak D, Braun A, Vollmer A, Rekas M (2013) Effect of the titania substitution on the electronic structure and transport properties of FSS-made Fe2O3 nanoparticles for hydrogen sensing. Sens Actuators B Chem 187:347–355. doi: 10.1016/j.snb.2012.12.038 CrossRefGoogle Scholar
  45. 45.
    Zhang WF, Zhang MS, Yin Z, Chen Q (2000) Photoluminescence in anatase titanium dioxide nanocrystals. Appl Phys B Lasers Opt 70:261–265. doi: 10.1007/s003400050043 CrossRefGoogle Scholar
  46. 46.
    Wang X, Blackford M, Prince K, Caruso RA (2012) Preparation of boron-doped porous titania networks containing gold nanoparticles with enhanced visible-light photocatalytic activity. ACS Appl Mater Interfaces 4:476–482. doi: 10.1021/am201695c CrossRefGoogle Scholar
  47. 47.
    Li XZ, Li FB (2001) Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and Wastewater treatment. Environ Sci Technol 35:2381–2387. doi: 10.1021/es001752w CrossRefGoogle Scholar
  48. 48.
    Barroso M, Mesa CA, Pendlebury SR et al (2012) Dynamics of photogenerated holes in surface modified -Fe2O3 photoanodes for solar water splitting. Proc Natl Acad Sci 109:15640–15645. doi: 10.1073/pnas.1118326109 CrossRefGoogle Scholar
  49. 49.
    Dotan H, Sivula K, Grätzel M et al (2011) Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci 4:958–964. doi: 10.1039/C0EE00570C CrossRefGoogle Scholar
  50. 50.
    Kozuka H, Kajimura M (2001) Sol-gel preparation and photoelectrochemical properties of Fe2TiO5 thin films. J Sol-Gel Sci Technol 22:125–132. doi: 10.1023/A:1011228706934 CrossRefGoogle Scholar
  51. 51.
    Lou Z, Li Y, Song H et al (2016) Fabrication of Fe2TiO5/TiO2 nanoheterostructures with enhanced visible-light photocatalytic activity. RSC Adv 6:45343–45348. doi: 10.1039/C6RA06763H CrossRefGoogle Scholar
  52. 52.
    Zhao Y, Nakamura R, Kamiya K et al (2013) Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun. doi: 10.1038/ncomms3390 Google Scholar
  53. 53.
    Šljukić B, Vujković M, Amaral L et al (2015) Carbon-supported Mo2C electrocatalysts for hydrogen evolution reaction. J Mater Chem A 3:15505–15512. doi: 10.1039/C5TA02346G CrossRefGoogle Scholar
  54. 54.
    Klahr B, Gimenez S, Fabregat-Santiago F et al (2012) Water oxidation at hematite photoelectrodes: the role of surface states. J Amer Chem Soc 134:4294–4302. doi: 10.1021/ja210755h CrossRefGoogle Scholar
  55. 55.
    Lopes T, Andrade L, Le Formal F et al (2014) Hematite photoelectrodes for water splitting: evaluation of the role of film thickness by impedance spectroscopy. Phys Chem Chem Phys 16:16515. doi: 10.1039/C3CP55473B CrossRefGoogle Scholar
  56. 56.
    Guo S, Wang S, Wu N et al (2015) Facile synthesis of porous Fe2TiO5 microparticulates serving as anode material with enhanced electrochemical performances. RSC Adv 5:103767–103775. doi: 10.1039/C5RA22930H CrossRefGoogle Scholar
  57. 57.
    Shoar Abouzari MR, Berkemeier F, Schmitz G, Wilmer D (2009) On the physical interpretation of constant phase elements. Solid State Ion 180:922–927. doi: 10.1016/j.ssi.2009.04.002 CrossRefGoogle Scholar
  58. 58.
    Bondarenko AS, Ragoisha G, EIS Spectrum Analyzer,
  59. 59.
    Martínez R, Kumar A, Palai R et al (2011) Impedance spectroscopy analysis of Ba 0.7 Sr 03 TiO 3/La 0.7 Sr 0.3 MnO 3 heterostructure. J Phys D Appl Phys 44:105302. doi: 10.1088/0022-3727/44/10/105302 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Technical Sciences of SASABelgradeSerbia
  3. 3.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia
  4. 4.Photonics Center, Institute of Physics BelgradeUniversity of BelgradeBelgradeSerbia

Personalised recommendations