Journal of Materials Science

, Volume 52, Issue 10, pp 5822–5834 | Cite as

Grain boundary segregation of elements of groups 14 and 15 and its consequences for intergranular cohesion of ferritic iron

  • Pavel Lejček
  • Pavel Šandera
  • Jana Horníková
  • Petr Řehák
  • Jaroslav Pokluda
Original Paper

Abstract

The experimentally determined data—enthalpy and entropy—of the grain boundary segregation of substitutional solutes of 14th and 15th groups of the periodic table, i.e., silicon, phosphorus, tin, and antimony, in α-iron are compared. The consequences of the grain boundary segregation of these elements for the intergranular strengthening or embrittlement are also shown. It is documented that all these solutes except silicon segregate at the grain boundaries interstitially at enhanced temperatures although substitutional segregation is preferred at zero K. Despite some variations, the values of the strengthening/embrittling Gibbs energy of all solutes are nearly linearly dependent on the differences in the sublimation energies of the host and solute.

Notes

Acknowledgement

The authors would like to thank M. Všianská (Institute of Physics of Materials, AS CR, Brno, Czech Republic) and P. Šesták (CEITEC VUT, Brno University of Technology, Brno, Czech Republic) for many fruitful discussions. The authors gratefully acknowledge financial support of the Czech Science Foundation (Grant P108/12/0144) and the Ministry of Education, Youth and Sports of the Czech Republic under the Project CEITEC 2020 (Project No. LQ1601).

References

  1. 1.
    Lejček P (2010) Grain boundary segregation in metals. Springer, Berlin, pp 1–239Google Scholar
  2. 2.
    Gottstein G, Shvindlerman LS (1999) Grain boundary migration in metals: thermodynamics, kinetics, applications. CRC Press, Boca Raton, pp 1–385Google Scholar
  3. 3.
    Kirchheim R (2002) Grain coarsening inhibited by solute segregation. Acta Mater 50:413–419CrossRefGoogle Scholar
  4. 4.
    Lejček P, Gärtnerová V, Jäger A, Vaníčková J, Děd J, Haloda J (2011) Crystallographic aspects of intergranular failure of archaeological silver artefacts. Surf Interface Anal 43:1128–1133CrossRefGoogle Scholar
  5. 5.
    Rice JR, Wang JS (1989) Embrittlement of interfaces by solute segregation. Mater Sci Eng A 107:23–40CrossRefGoogle Scholar
  6. 6.
    Hondros ED, Seah MP, Hofmann S, Lejček P (1996) Interfacial and surface microchemistry. In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th edn. North-Holland, Amsterdam, pp 1201–1289CrossRefGoogle Scholar
  7. 7.
    Janovec J, Pokluda J, Jenko M, Lejček P, Vlach B, Horníková J (2006) Influence of phosphorus enrichment at grain boundaries on energy of intergranular fracture in Fe–Si–P alloys. Surf Interface Anal 38:401–405CrossRefGoogle Scholar
  8. 8.
    Šandera P, Pokluda J, Horníková J, Vlach B, Lejček P, Jenko M (2010) Fracture of polycrystalline Fe-2.3%V-0.12%P alloy. Eng Fract Mech 77:385–392CrossRefGoogle Scholar
  9. 9.
    Lejček P, Šob M, Paidar V (2017) Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results. Prog Mater Sci (in press), http://dx.doi.org/10.1016/j.pmatsci.2016.11.001
  10. 10.
    Seah MP, Lea C (1975) Surface segregation and its relation to grain boundary segregation. Philos Mag 31:627–645CrossRefGoogle Scholar
  11. 11.
    Grabke HJ (1989) Surface and grain boundary segregation on and in iron and steels. ISIJ Int 29:529CrossRefGoogle Scholar
  12. 12.
    Mast R, Viefhaus H, Grabke HJ (1999) Grain boundary segregation of antimony in iron base alloys and its effect on toughness. Steel Res 70:239–246CrossRefGoogle Scholar
  13. 13.
    Lejček P (2004) Grain boundary segregation of antimony in α-iron: prediction and experimental data. J Alloy Compd 378:85–88CrossRefGoogle Scholar
  14. 14.
    Lejček P, Hofmann S (2016) Interstitial and substitutional solute segregation at individual grain boundaries of α-iron: data revisited. J Phys Cond Matter 28:064001CrossRefGoogle Scholar
  15. 15.
    Erhart H, Grabke HJ (1981) Equilibrium segregation of phosphorus at grain boundaries of Fe–P, Fe–C–P, Fe–Cr–P, and Fe–Cr–C–P alloys. Metal Sci 15:401–408CrossRefGoogle Scholar
  16. 16.
    Wu J, Song SH, Weng LQ, Xi TH, Yuan ZX (2008) An Auger electron spectroscopy study of phosphorus and molybdenum grain boundary segregation in a 2.25Cr1Mo steel. Mater Charact 59:261–265CrossRefGoogle Scholar
  17. 17.
    Chen XM, Song SH, Weng LQ, Liu SJ, Wang K (2011) Relation of ductile-to-brittle transition temperature to phosphorus grain boundary segregation for a Ti-stabilized interstitial free steel. Mater Sci Eng A 528:8299–8304CrossRefGoogle Scholar
  18. 18.
    Nakata H, Fujii K, Fukuya K, Kasada R, Kimura A (2006) Grain boundary phosphorus segregation in thermally aged low alloy steels. J Nucl Sci Technol 43:785–793CrossRefGoogle Scholar
  19. 19.
    Lejček P, Hofmann S (1990) Temperature dependence of the phosphorus segregation at the twin boundary in an Fe-4at.%Si alloy. Surf Interface Anal 16:546–551CrossRefGoogle Scholar
  20. 20.
    Lejček P, Hofmann S (1991) Segregation enthalpies of phosphorus, carbon and silicon at 013 and 012 symmetrical tilt grain boundaries in an Fe-3.5at.%Si alloy. Acta Metall Mater 39:2469–2476CrossRefGoogle Scholar
  21. 21.
    Lejček P, Adámek J, Hofmann S (1992) Anisotropy of grain boundary segregation in Σ = 5 bicrystals of α-iron. Surface Sci 246:449–454Google Scholar
  22. 22.
    Hofmann S, Lejček P, Adámek J (1992) Grain boundary segregation in [100] symmetrical tilt bicrystals of an Fe–Si alloy. Surf Interface Anal 19:601–606CrossRefGoogle Scholar
  23. 23.
    Lejček P (1994) Characterization of grain boundary segregation in an Fe–Si alloy. Anal Chim Acta 297:165–178CrossRefGoogle Scholar
  24. 24.
    Lejček P, Hofmann S (1994) Auger electron spectroscopy on both fracture surfaces of an (001)/(011) asymmetrical grain boundary. Surface Sci 307–309:793–803Google Scholar
  25. 25.
    Lejček P, Paidar V, Adámek J, Hofmann S (1997) Segregation and corrosion behaviour of incommensurate 45°[100] grain boundaries in an Fe–Si alloy: the role of grain boundary plane orientation. Acta Mater 45:3915–3926CrossRefGoogle Scholar
  26. 26.
    Lejček P, Hofmann S, Paidar V (2003) Segregation based classification of [100] tilt grain boundaries in α-iron and its consequences for grain boundary engineering. Acta Mater 51:3951–3963CrossRefGoogle Scholar
  27. 27.
    Lejček P, Šob M (2014) An analysis of segregation-induced changes in grain boundary cohesion in bcc iron. J Mater Sci 49:2477–2482. doi: 10.1007/s10853-013-7943-z CrossRefGoogle Scholar
  28. 28.
    Lejček P, Šandera P, Horníková J, Pokluda J, Godec M (2016) On the segregation behavior of tin and antimony at grain boundaries of polycrystalline bcc iron. Appl Surf Sci 363:140–144CrossRefGoogle Scholar
  29. 29.
    Lejček P (1998) On the determination of surface composition in Auger electron spectroscopy. Surface Sci 202:493–508Google Scholar
  30. 30.
    Guttmann M, McLean D (1979) Grain boundary segregation in multicomponent systems. In: Johnson WC, Blakely JM (eds) Interfacial segregation. ASM, Metals Park, pp 261–348Google Scholar
  31. 31.
    Lejček P, Hofmann S (2008) Thermodynamics of grain boundary segregation and applications to anisotropy, compensation effect and prediction. Crit Rev Sol State Mater Sci 33:133–163CrossRefGoogle Scholar
  32. 32.
    Černý M, Šesták P, Řehák P, Všianská M, Šob M (2016) Ab initio tensile tests of grain boundaries in the fcc crystals of Ni and Co with segregated sp-impurities. Mater Sci Eng A 669:218–225CrossRefGoogle Scholar
  33. 33.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115CrossRefGoogle Scholar
  34. 34.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169CrossRefGoogle Scholar
  35. 35.
    Lejček P (2005) Enthalpy–entropy compensation effect in grain boundary phenomena. Z Metallkde 96:1129–1133CrossRefGoogle Scholar
  36. 36.
    King HW (1982) Atomic size parameters for the elements. Bull Alloy Phase Diagr 2:528CrossRefGoogle Scholar
  37. 37.
    Seah MP, Hondros ED (1977) Segregation to interfaces. Int Metal Rev 22:262–301Google Scholar
  38. 38.
    Lejček P, Jäger A, Gärtnerová V (2010) Reversed anisotropy of grain boundary properties and its effect on grain boundary engineering. Acta Mater 58:1930–1937CrossRefGoogle Scholar
  39. 39.
    Hofmann S, Lejček P (1991) Correlation between segregation enthalpy, solid solubility and interplanar spacing of Σ = 5 tilt grain boundaries in α-iron. Scripta Metall Mater 25:2259–2262CrossRefGoogle Scholar
  40. 40.
    Lejček P, Hofmann S (1993) Grain boundary segregation diagrams of α-iron. Interface Sci 1:161–172Google Scholar
  41. 41.
    Seah MP (1980) Adsorption-induced interface decohesion. Acta Metall 28:955–962CrossRefGoogle Scholar
  42. 42.
    Gibson MA, Schuh CA (2016) A survey of ab initio calculations shows that segregation-induced grain boundary embrittlement is predicted by bond-breaking arguments. Scripta Mater 113:55–58CrossRefGoogle Scholar
  43. 43.
    Lejček P, Hofmann S, Krajnikov AV (1997) Chemical aspects of brittle fracture: grain boundary segregation. Mater Sci Eng A 234–6:283–286Google Scholar
  44. 44.
    Wu R, Freeman AJ, Olson GB (1994) Nature of phosphorus embrittlement of the [111] (111) grain boundary. Phys Rev B 50:75–81CrossRefGoogle Scholar
  45. 45.
    Sagert LP, Olson GB, Ellis DE (1998) Chemical embrittlement of Fe grain boundaries: P and the P-Mo couple. Philos Mag B 77:871–889CrossRefGoogle Scholar
  46. 46.
    Fen YQ, Wang CY (2001) Electronic effects of nitrogen and phosphorus on iron grain boundary cohesion. Comput Mater Sci 20:48–56CrossRefGoogle Scholar
  47. 47.
    Wu R, Freeman AJ, Olson GB (2004) First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion. Science 265:376–380CrossRefGoogle Scholar
  48. 48.
    Yamaguchi M, Kameda J (2014) Multiscale thermodynamic analysis on fracture toughness loss induced by solute segregation in steel. Philos Mag 94:2131–2149CrossRefGoogle Scholar
  49. 49.
    Geng WT, Freeman AJ, Olson GB (2001) Influence of alloying additions on the impurity induced grain boundary embrittlement. Sol State Commun 119:585–590CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pavel Lejček
    • 1
  • Pavel Šandera
    • 2
    • 3
  • Jana Horníková
    • 2
    • 3
  • Petr Řehák
    • 2
    • 3
    • 4
  • Jaroslav Pokluda
    • 2
    • 3
  1. 1.Institute of PhysicsAcademy of Sciences of the Czech Republic (AS CR)Prague 8Czech Republic
  2. 2.Faculty of Mechanical EngineeringBrno University of TechnologyBrnoCzech Republic
  3. 3.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  4. 4.Institute of Physics of MaterialsAS CRBrnoCzech Republic

Personalised recommendations