Journal of Materials Science

, Volume 52, Issue 10, pp 5672–5685 | Cite as

Effect of graphene dispersion on the equilibrium structure and deformation of graphene/eicosane composites as surrogates for graphene/polyethylene composites: a molecular dynamics simulation

  • Shenghui Chen
  • Qiang Lv
  • Zhikun Wang
  • Chunling Li
  • Charles U. PittmanJr.
  • Steven R. Gwaltney
  • Shuangqing Sun
  • Songqing Hu
Original Paper
  • 171 Downloads

Abstract

Molecular dynamics simulations are used to investigate the effect of graphene dispersion on the equilibrium structure and deformation of graphene/eicosane composites. Two graphene sheets with four different interlayer distances are incorporated, respectively, into a eicosane matrix to form graphene/eicosane composites representing different graphene dispersions. With greater graphene dispersion, the “adsorption solidification” of the eicosane increases, where eicosane molecular lamination, orientation, and extension become more uniform and stronger. In addition, eicosane molecular motion is inhibited more in the direction perpendicular to graphene surfaces. When these graphene/eicosane composites are deformed, the free volume initially increases slowly due to small, scattered voids. After reaching the yield strains, the free volume rises sharply as the structures of composites are damaged, and small voids merge into large voids. The damage always occurs in the region of the composite with the weakest “adsorption solidification.” Since this effect is stronger when the graphene sheets are more dispersed, more complete dispersion results in higher composite yield stresses. Lessons from these simulations may provide some insights into graphene/polyethylene composites, where suitable models would require very long equilibration times.

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  2. 2.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRefGoogle Scholar
  3. 3.
    Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491–495CrossRefGoogle Scholar
  4. 4.
    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214CrossRefGoogle Scholar
  5. 5.
    Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25CrossRefGoogle Scholar
  6. 6.
    Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Nature 41:666–686Google Scholar
  7. 7.
    Kuilla T, Bhadra S, Yao DH, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRefGoogle Scholar
  8. 8.
    Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271CrossRefGoogle Scholar
  9. 9.
    Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972CrossRefGoogle Scholar
  10. 10.
    Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRefGoogle Scholar
  11. 11.
    Liang JJ, Wang Y, Huang Y, Ma YF, Liu ZF, Cai JM, Zhang CD, Gao HJ, Chen YS (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925CrossRefGoogle Scholar
  12. 12.
    Pang HA, Chen C, Zhang YC, Ren PG, Yan DX, Li ZM (2011) The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets. Carbon 49:1980–1988CrossRefGoogle Scholar
  13. 13.
    Song PG, Gao ZH, Cai YZ, Zhao LP, Fang ZP, Fu SY (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52:4001–4010CrossRefGoogle Scholar
  14. 14.
    Rafiee MA, Rafiee J, Srivastava I, Wang Z, Song H, Yu Z-Z, Koratkar N (2010) Fracture and fatigue in graphene nanocomposites. Small 6:179–183CrossRefGoogle Scholar
  15. 15.
    Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRefGoogle Scholar
  16. 16.
    Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682CrossRefGoogle Scholar
  17. 17.
    Si Y, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797CrossRefGoogle Scholar
  18. 18.
    Zacharia R, Ulbricht H, Hertel T (2004) Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys Rev B 69:155406CrossRefGoogle Scholar
  19. 19.
    Tang LC, Wan YJ, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ (2013) The effect of graphene/epoxy composites on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27CrossRefGoogle Scholar
  20. 20.
    Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRefGoogle Scholar
  21. 21.
    Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CCM, Li SML, Wang YS (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803CrossRefGoogle Scholar
  22. 22.
    Montazeria A, Rafii-Tabar H (2011) Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites. Phys Lett A 375:4034–4040CrossRefGoogle Scholar
  23. 23.
    Ebrahimi S, Ghafoori-Tabrizi K, Rafii-Tabar H (2012) Multi-scale computational modelling of the mechanical behaviour of the chitosan biological polymer embedded with graphene and carbon nanotube. Comput Mater Sci 53:347–353CrossRefGoogle Scholar
  24. 24.
    Zhang T, Xue Q, Zhang S, Dong M (2012) Theoretical approaches to graphene and graphene-based materials. Nano Today 7:180–200CrossRefGoogle Scholar
  25. 25.
    Shiu SC, Tsai JL (2014) Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites. Compos B 56:691–697CrossRefGoogle Scholar
  26. 26.
    Rahman R, Haque A (2013) Molecular modeling of cross-linked graphene–epoxy nanocomposites for characterization of elastic constants and interfacial properties. Compos B 54:353–364CrossRefGoogle Scholar
  27. 27.
    Rahman R, Foster JT (2014) Defromation mechanism of graphene in amporphous polyethylene: a molecular dynamics based study. Comput Mater Sci 87:232–240CrossRefGoogle Scholar
  28. 28.
    Hadden CM, Klimek-McDonald DR, Pineda EJ, King JA, Reichanadter AM, Miskioglu I, Gowtham S, Odegard GM (2015) Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: multiscale modeling and experiments. Carbon 95:100–112CrossRefGoogle Scholar
  29. 29.
    Lv C, Xue Q, Xia D, Ma M, Xie J, Chen H (2010) Effect of chemisorption on the interfacial bonding characteristics of graphene–polymer composites. J Phys Chem C 114:6588–6594CrossRefGoogle Scholar
  30. 30.
    Lv C, Xue Q, Xia D, Ma M (2012) Effect of chemisorption structure on the interfacial bonding characteristics of graphene–polymer composites. Appl Surf Sci 258:2077–2082CrossRefGoogle Scholar
  31. 31.
    Xiong QL, Tian XG (2015) Atomistic modeling of mechanical characteristics of CNT-polyethylene with interfacial covalent interaction. Journal of Nanomaterials 1-9Google Scholar
  32. 32.
    Liu F, Hu N, Ning H, Liu Y, Li Y, Wu L (2015) Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene. Comput Mater Sci 108:160–167CrossRefGoogle Scholar
  33. 33.
    Rissanou AN, Power AJ, Harmandaris V (2015) Structural and dynamical properties of polyethylene/graphene nanocomposites through molecular dynamics simulations. Polymer 7:390–417CrossRefGoogle Scholar
  34. 34.
    Rissanou AN, Harmandaries V (2014) Dynamics of various polymer–graphene interfacial systems through atomistic molecular dynamics simulations. Soft Matter 10:2876–2888CrossRefGoogle Scholar
  35. 35.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19CrossRefGoogle Scholar
  36. 36.
    Sun H (1994) Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem 15:752–768CrossRefGoogle Scholar
  37. 37.
    Yang S, Yu S, Cho M (2013) Influence of Thrower–Stone–Wales defects on the interfacial properties of carbon nanotube/polypropylene composites by a molecular dynamics approach. Carbon 55:133–143CrossRefGoogle Scholar
  38. 38.
    Fan HB, Yuen MMF (2007) Material properties of cross-linked epoxy resin compound predicted by molecular dynamics simulation. Polymer 48:2174–2178CrossRefGoogle Scholar
  39. 39.
    Yang L, Srolovitz DJ, Yee AF (1997) Extended ensemble molecular dynamics method for constant strain rate uniaxial deformation of polymer systems. J Chem Phys 107:4396–4407CrossRefGoogle Scholar
  40. 40.
    Hossain D, Tschopp MA, Ward DK, Bouvard JL, Wang P, Horstemeyer MF (2010) Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene. Polymer 51:6071–6083CrossRefGoogle Scholar
  41. 41.
    Jiang Q, Tallury SS, Qiu YP, Pasquinelli MA (2014) Molecular dynamics simulations of the effect of the volume fraction on unidirectional polyimide–carbon nanotube nanocomposites. Carbon 67:440–448CrossRefGoogle Scholar
  42. 42.
    Edelsbrummer H, Mücke EP (1994) Three-dimensional alpha shapes. ACM Trans Graph 13:63–100Google Scholar
  43. 43.
    Stukowski A (2014) Computational analysis methods in atomistic modeling of crystals. JOM 66:399–407CrossRefGoogle Scholar
  44. 44.
    Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model Simul Mater Sci Eng 18:015012CrossRefGoogle Scholar
  45. 45.
    Chen SH, Sun SQ, Gwaltney SR, Li CL, Wang XM, Hu SQ (2015) Molecular dynamics simulations of the interaction between carbon nanofiber and epoxy resin monomers. Acta Polym Sin 10:1158–1164Google Scholar
  46. 46.
    Nouranian S, Jang C, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2011) Molecular dynamics simulations of vinyl ester resin monomer interactions with a pristine vapor–grown carbon nanofiber and their implications for composite interphase formation. Carbon 49:3219–3232CrossRefGoogle Scholar
  47. 47.
    Jang C, Nouranian S, Lacy TE, Gwaltney SR, Toghiani H, Pittman CU Jr (2012) Molecular dynamics simulations of oxidized vapor–grown carbon nanofiber surface interactions with vinyl ester resin monomers. Carbon 50:748–760CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Shenghui Chen
    • 1
  • Qiang Lv
    • 1
  • Zhikun Wang
    • 1
  • Chunling Li
    • 1
  • Charles U. PittmanJr.
    • 2
  • Steven R. Gwaltney
    • 2
  • Shuangqing Sun
    • 1
  • Songqing Hu
    • 1
    • 3
  1. 1.College of ScienceChina University of Petroleum (East China)QingdaoPeople’s Republic of China
  2. 2.Department of ChemistryMississippi State UniversityMississippi StateUSA
  3. 3.Key Laboratory of New Energy Physics and Materials Science in Universities of ShandongChina University of Petroleum (East China)QingdaoChina

Personalised recommendations