Journal of Materials Science

, Volume 52, Issue 15, pp 8761–8771 | Cite as

Tuning mesoporous silica dissolution in physiological environments: a review

  • Juan L. Paris
  • Montserrat Colilla
  • Isabel Izquierdo-Barba
  • Miguel Manzano
  • María Vallet-RegíEmail author
In Honor of Larry Hench


Matrix degradation has a major impact on the release kinetics of drug delivery systems. Regarding ordered mesoporous silica materials for biomedical applications, their dissolution is an important parameter that should be taken into consideration. In this paper, we review the main factors that govern the mesoporous silica dissolution in physiological environments. We also provide the necessary knowledge to researchers in the area for tuning the dissolution rate of those matrices, so the degradation could be controlled and the material behaviour optimised.


Mesoporous Silica Simulated Body Fluid Bioactive Glass Physiological Environment Simulated Gastric Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank funding from the EU H2020-NMP-PILOTS-2015 programme through the Grant No. 685872 (MOZART) and the European Research Council (Advanced Grant VERDI; ERC-2015-AdG Proposal No. 694160). The authors also thank Spanish MINECO (CSO2010-11384-E and MAT2015-64831-R Grants). JL Paris gratefully acknowledges MINECO, Spain, for his PhD Grant (BES-2013-064182).

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.


  1. 1.
    Vallet-Regí M, Rámila A, del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311CrossRefGoogle Scholar
  2. 2.
    Vallet-Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558CrossRefGoogle Scholar
  3. 3.
    Wang S (2009) Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater 117:1–9CrossRefGoogle Scholar
  4. 4.
    Manzano M, Colilla M, Vallet-Regí M (2009) Drug delivery from ordered mesoporous matrices. Expert Opin Drug Deliv 6:1–18CrossRefGoogle Scholar
  5. 5.
    Yang P, Gai S, Lin J (2012) Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev 41:3679–3698CrossRefGoogle Scholar
  6. 6.
    Vallet-Regí M, Ruiz-González L, Izquierdo-Barba I, González-Calbet JM (2006) Revisiting silica-based ordered mesoporous materials: medical applications. J Mater Chem 16:26–31CrossRefGoogle Scholar
  7. 7.
    Vallet-Regí M, Colilla M, Izquierdo-Barba I (2008) Bioactive mesoporous silicas as controlled delivery systems: application in bone tissue regeneration. J Biomed Nanotechnol 4:1–15Google Scholar
  8. 8.
    Vallet-Regí M, Colilla M, González B (2011) Medical applications of organic–inorganic hybrid materials within the field of silica-based bioceramics. Chem Soc Rev 40:596–607CrossRefGoogle Scholar
  9. 9.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid–crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  10. 10.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552CrossRefGoogle Scholar
  11. 11.
    Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsum T (2004) Synthesis and characterization of chiral mesoporous silica. Nature 429:281–284CrossRefGoogle Scholar
  12. 12.
    Yamauchi Y, Suzukia N, Kimura T (2009) Formation of mesoporous oxide fibers in polycarbonate confined spaces. Chem Commun 38:5689–5691CrossRefGoogle Scholar
  13. 13.
    Yu CZ, Fan J, Tian BZ, Zhao D, Stucky GD (2002) High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv Mater 14:1742–1745CrossRefGoogle Scholar
  14. 14.
    Kosuge K, Sato T, Kikukawa N, Takemori M (2004) Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate. Chem Mater 16:899–905CrossRefGoogle Scholar
  15. 15.
    Soler-Illia GJAA, Innocenzi P (2006) Mesoporous hybrid thin films: the physics and chemistry beneath. Chem Eur J 12:4478–4494CrossRefGoogle Scholar
  16. 16.
    Sanchez C, Boissiere C, Grosso D, Laberty C, Nicole L (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater 20:682–737CrossRefGoogle Scholar
  17. 17.
    Melosh NA, Davidson P, Chmelka BF (2000) Monolithic mesophase silica with large ordering domains. J Am Chem Soc 122:823–829CrossRefGoogle Scholar
  18. 18.
    Naik SP, Fan W, Yokoi T, Okubo T (2006) Synthesis of a three-dimensional cubic mesoporous silica monolith employing an organic additive through an evaporation-induced self-assembly process. Langmuir 22:6391–6397CrossRefGoogle Scholar
  19. 19.
    Schacht S, Huo Q, Voigt-Martin IG, Stucky GD, Schüth F (1996) Oil-water interface templating of mesoporous macroscale structures. Science 273:768–771CrossRefGoogle Scholar
  20. 20.
    Lai C-Y, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS-Y (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459CrossRefGoogle Scholar
  21. 21.
    Vallet-Regí M, Ruiz-Hernández E (2011) Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater 23:5177–5218CrossRefGoogle Scholar
  22. 22.
    Wu KC-W, Yamauchi Y (2012) Controlling physical features of mesoporous silica nanoparticles (MSN) for emerging applications. J Mater Chem 22:1251–1256CrossRefGoogle Scholar
  23. 23.
    Colilla M, González B, Vallet-Regí M (2013) Mesoporous silica nanoparticles for the design of smart delivery nanodevices. Biomater Sci 1:114–134CrossRefGoogle Scholar
  24. 24.
    Baeza A, Colilla M, Vallet-Regí M (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12:319–337CrossRefGoogle Scholar
  25. 25.
    Castillo RR, Colilla M, Vallet-Regí M (2016) Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer. Expert Opin Drug Deliv. doi: 10.1080/17425247.2016.1211637 Google Scholar
  26. 26.
    Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK, Gerber LC, Moch H, Stark WJ (2010) Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett 197(3):169–174CrossRefGoogle Scholar
  27. 27.
    Vallet-Regí M (2014) Bio-ceramics with clinical applications. Wiley, ChichesterCrossRefGoogle Scholar
  28. 28.
    Terasaki O, Ohsuna T, Liu Z, Sakamoto Y, Garcia-Bennett AE (2004) Structural study of mesoporous materials by electron microscopy. Stud Surf Sci Catal 148:261–288CrossRefGoogle Scholar
  29. 29.
    Czuryszkiewicz T, Ahvenlammi J, Kortesuo P, Ahola M, Kleitz F, Jokinen M, Lindén M, Rosenholm JB (2002) Drug release from biodegradable silica fibers. J Non Cryst Solids 306:1–10CrossRefGoogle Scholar
  30. 30.
    Viitala R, Jokinen M, Tuusa S, Rosenholm JB, Jalonen HJ (2005) Adjustably bioresorbable sol–gel derived SiO2 matrices for release of large biologically active molecules. Sol Gel Sci Technol 36:147–156CrossRefGoogle Scholar
  31. 31.
    Kortesuo P, Ahola M, Kangas M, Kangasniemi I, Yli-Urpo A, Kiesvaara J (2000) In vitro evaluation of sol–gel processed spraydried sillica gel microspheres as carrier in controlled drugdelivery. Int J Pharm 200:223–229CrossRefGoogle Scholar
  32. 32.
    Jokinen M, Peltola T, Veittola S, Rahiala H, Rosenholm JB (2000) Adjustable biodegradation for ceramic fibres derived from silica sols. J Eur Ceram Soc 20:1739–1748CrossRefGoogle Scholar
  33. 33.
    Izquierdo-Barba I, Colilla M, Manzano M, Vallet-Regí M (2010) In vitro stability of SBA-15 under physiological conditions. Microporous Mesoporous Mater 132:442–452CrossRefGoogle Scholar
  34. 34.
    He Q, Shi J, Zhu M, Chen Y, Chen F (2010) The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous Mesoporous Mater 131:314–320CrossRefGoogle Scholar
  35. 35.
    Gunawidjaja PN, Mathew R, Lo AYH, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2012) Local structures of mesoporous bioactive glasses and their surface alterations in vitro: inferences from solid-state NMR. Phil Trans R Soc A 370:1376–1399CrossRefGoogle Scholar
  36. 36.
    Choi Y, Lee JE, Lee JH, Jeong JH, Kim J (2015) A biodegradation study of SBA-15 microparticles in simulated body fluid and in vivo. Langmuir 31:6457–6462CrossRefGoogle Scholar
  37. 37.
    Gouze B, Cambedouzou J, Parrès-Maynadié S, Rébiscoul D (2014) How hexagonal mesoporous silica evolves in water on short and long term: role of pore size and silica wall porosity. Microporous Mesoporous Mater 183:168–176CrossRefGoogle Scholar
  38. 38.
    Izquierdo-Barba I, Ruiz-González L, Doadrio JC, González-Calbet JM, Vallet-Regí M (2005) Tissue regeneration: a new property of mesoporous materials. Solid State Sci 7:983–989CrossRefGoogle Scholar
  39. 39.
    Sakamoto Y, Kim T-W, Ryoo R, Terasaki O (2004) Three-dimensional structure of large-pore mesoporous cubic Ia-3d imaged silica with complementary pores and its carbon replica by electron crystallography. Angew Chem Int Ed 43:5231–5234CrossRefGoogle Scholar
  40. 40.
    Bass JD, Grosso D, Boissiere C, Belamie E, Coradin T, Sanchez C (2007) Stability of mesoporous oxide and mixed metal oxide materials under biologically relevant conditions. Chem Mater 19:4349–4356CrossRefGoogle Scholar
  41. 41.
    Li X, Zhang L, Dong X, Liang J, Shi J (2007) Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior. Microporous Mesoporous Mater 102:151–158CrossRefGoogle Scholar
  42. 42.
    Yan XX, Deng HX, Huang XH, Lu GQ, Qiao SZ, Zhao DY, Yu CZ (2005) Mesoporous bioactive glasses. I. Synthesis and structural characterization. J Non Cryst Solids 351:3209–3217CrossRefGoogle Scholar
  43. 43.
    Xia W, Chang J (2006) Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release 110:522–530CrossRefGoogle Scholar
  44. 44.
    Diaz A, Lopez T, Manjarrez J, Basaldella E, Martinez-Blanes JM, Odriozola JA (2006) Growth of hydroxyapatite in a biocompatible mesoporous ordered silica. Acta Biomater 2:173–179CrossRefGoogle Scholar
  45. 45.
    Maçon ALB, Kim TB, Valliant EM, Goetschius K, Brow RK, Day DE, Hoppe A, Boccaccini AR, Kim IY, Ohtsuki C, Kokubo T, Osaka A, Vallet-Regí M, Arcos D, Fraile L, Salinas AJ, Teixeira Vueva Y, Almeida Miola M, Vitale-Brovarone C, Verné E, Höland E, Jones JR (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10CrossRefGoogle Scholar
  46. 46.
    Turdean-Ionescu C, Stevensson B, Grins J, Izquierdo-Barba I, García A, Arcos D, Vallet-Regí M, Edén M (2015) Composition-dependent in vitro apatite formation at mesoporous bioactive glass-surfaces quantified by solid-state NMR and powder XRD. RSC Adv 5:86061–86071CrossRefGoogle Scholar
  47. 47.
    Arcos D, Greenspan DC, Vallet-Regí M (2003) A new quantitative method to evaluate the in vitro bioactivity of melt and sol–gel-derived silicate glasses. J Biomed Mater Res A 65:344–351CrossRefGoogle Scholar
  48. 48.
    Gunawidjaja PN, Izquierdo-Barba I, Mathew R, Jansson K, García A, Grins J, Arcos D, Vallet-Regí M, Edén M (2012) J Mater Chem 22:7214–7223CrossRefGoogle Scholar
  49. 49.
    Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017CrossRefGoogle Scholar
  50. 50.
    García A, Colilla M, Izquierdo-Barba I, Vallet-Regí M (2009) Incorporation of phosphorus into mesostructured silicas: a novel approach to reduce the SiO2 leaching in water. Chem Mater 21:4135–4145CrossRefGoogle Scholar
  51. 51.
    Vallet-Regí M, Izquierdo-Barba I, Rámila A, Pérez-Pariente J, Babonneau F, González-Calbet JM (2004) Phosphorous-doped MCM-41 as bioactive material. Solid State Sci 7:233–237CrossRefGoogle Scholar
  52. 52.
    Huang X, Young NP, Townley HE (2014) Characterization and comparison of mesoporous silica particles for optimized drug delivery. Nanomater Nanotechnol 4:1–15CrossRefGoogle Scholar
  53. 53.
    Braun K, Pochert A, Beck M, Fiedler R, Gruber J, Lindén M (2016) Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids. J Sol Gel Sci Technol 79(2):319–327CrossRefGoogle Scholar
  54. 54.
    Yamada H, Urata C, Aoyama Y, Osada S, Yamauchi Y, Kuroda K (2012) Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem Mater 24(8):1462–1471CrossRefGoogle Scholar
  55. 55.
    Hao N, Liu H, Li L, Chen D, Li L, Tang F (2012) In vitro degradation behavior of silica nanoparticles under physiological conditions. J Nanosci Nanotechnol 12(8):6346–6354CrossRefGoogle Scholar
  56. 56.
    Li X, Zhang L, Dong X, Liang J, Shi J (2007) Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior. Microporous Mesoporous Mater 102(1–3):151–158CrossRefGoogle Scholar
  57. 57.
    Fontecave T, Sanchez C, Azaïs T, Boissière C (2012) Chemical modification as a versatile tool for tuning stability of silica based mesoporous carriers in biologically relevant conditions. Chem Mater 24(22):4326–4336CrossRefGoogle Scholar
  58. 58.
    Maggini L, Cabrera I, Ruiz-Carretero A, Prasetyanto EA, Robinet E, De Cola L (2016) Nanoscale 8(13):7240–7247CrossRefGoogle Scholar
  59. 59.
    Cauda V, Schlossbauer A, Bein T (2010) Bio-degradation study of colloidal mesoporous silica nanoparticles: effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater 132(1–2):60–71CrossRefGoogle Scholar
  60. 60.
    Cauda V, Argyo C, Bein T (2010) Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem 20(39):8693CrossRefGoogle Scholar
  61. 61.
    Paris JL, Cabañas MV, Manzano M, Vallet-Regí M (2015) Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano 9(11):11023–11033CrossRefGoogle Scholar
  62. 62.
    He Q, Zhang Z, Gao F, Li Y, Shi J (2011) In vivo Biodistribution and Urinary Excretion of Mesoporous Silica Nanoparticles: effects of Particle Size and PEGylation. Small 7(2):271–280CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Juan L. Paris
    • 1
    • 2
  • Montserrat Colilla
    • 1
    • 2
  • Isabel Izquierdo-Barba
    • 1
    • 2
  • Miguel Manzano
    • 1
    • 2
  • María Vallet-Regí
    • 1
    • 2
    Email author
  1. 1.Dpto. Química Inorgánica y Bioinorgánica, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12Universidad Complutense de MadridMadridSpain
  2. 2.CIBER de Bioingeniería, Biomateriales y NanomedicinaCIBER-BBNMadridSpain

Personalised recommendations