Journal of Materials Science

, Volume 51, Issue 14, pp 6974–6986 | Cite as

TiO2/graphene oxide immobilized in P(VDF-TrFE) electrospun membranes with enhanced visible-light-induced photocatalytic performance

  • Nuno A. Almeida
  • Pedro M. Martins
  • Sara Teixeira
  • José A. Lopes da Silva
  • Vitor Sencadas
  • K. Kühn
  • G. Cuniberti
  • S. Lanceros-Mendez
  • Paula A. A. P. Marques
Original Paper


Here, we report on the electrospinning of poly(vinylidene difluoride-co-trifluoroethylene) (P(VDF-TrFE)) copolymer fibrous membranes decorated with titanium dioxide/graphene oxide (TiO2/GO). The presence of the TiO2/GO increases the photocatalytic efficiency of the nanocomposite membrane towards the degradation of methylene blue (MB) when compared with the membranes prepared with naked TiO2, in UV and particularly in the visible range. Even a low content (3 %, w/w) of TiO2/GO in the fibers yields excellent photocatalytic performance by degrading ~100 % of a MB solution after 90 min of visible light exposure. This may be attributed to a rapid electron transport and the delayed recombination of electron–hole pairs due to improved ionic interaction between titanium and carbon combined with the advantageous electric properties of the polymer, such as high polarization and dielectric constant combined with low dielectric loss. Thus, a promising system to degrade organic pollutants in aqueous or gaseous systems under visible light irradiation has been developed.


TiO2 Graphene Oxide Methylene Blue Removal Efficiency Photocatalytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by FEDER through the COMPETE Program and by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Project PEST-C/FIS/UI607/2014. Thanks are also due to FCT/MEC for the financial support to the QOPNA research Unit (FCT UID/QUI/00062/2013) (also through national founds, co-financed by FEDER within the PT2020 Partnership Agreement). P. A. A. P. Marques thanks the FCT Investigator Program 2013 (IF/00917/2013). Nuno A. F. Almeida and P. M. Martins thank the FCT for grants SFRH/BD/70300/2010 and SFRH/BD/98616/2013, respectively. Financial support from the Basque Government Industry Department under the ELKARTEK Program is also acknowledged. SLM thanks the Diputación Foral de Bizkaia for financial support under the Bizkaia Talent program, European Union’s Seventh Framework Programme, Marie Curie Actions—People, and Grant Agreement No. 267230.


  1. 1.
    Zhang J, Xu Q, Feng Z, Li M, Li C (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Ed 47:1766–1769. doi: 10.1002/anie.200704788 CrossRefGoogle Scholar
  2. 2.
    Almeida NAF, da Silva PR, Gonçalves GAB, Marques PAAP (2015) Surface modification of natural and synthetic polymeric fibers for TiO2-based nanocomposites. In: Mittal V (ed) Surface modification of nanoparticle and natural fiber fillers. Polymer nano-, micro-macrocomposites, 7th edn. Wiley, Weinheim, pp 191–219CrossRefGoogle Scholar
  3. 3.
    Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D et al. (2013) H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 23:5444–5450. doi: 10.1002/adfm.201300486 CrossRefGoogle Scholar
  4. 4.
    Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB (2012) Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. J Am Chem Soc 134:3659–3662. doi: 10.1021/ja211369s CrossRefGoogle Scholar
  5. 5.
    Chen J, Qiu F, Xu W, Cao S, Zhu H (2015) Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Appl Catal A Gen 495:131–140. doi: 10.1016/j.apcata.2015.02.013 CrossRefGoogle Scholar
  6. 6.
    Rong X, Qiu F, Zhang C, Fu L, Wang Y, Yang D (2015) Preparation, characterization and photocatalytic application of TiO2–graphene photocatalyst under visible light irradiation. Ceram Int 41:2502–2511. doi: 10.1016/j.ceramint.2014.10.072 CrossRefGoogle Scholar
  7. 7.
    Jing J, Zhang Y, Li W, Yu WW (2014) Visible light driven photodegradation of quinoline over TiO2/graphene oxide nanocomposites. J Catal 316:174–181. doi: 10.1016/j.jcat.2014.05.009 CrossRefGoogle Scholar
  8. 8.
    Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5:8848–8868. doi: 10.1039/c2ee22238h CrossRefGoogle Scholar
  9. 9.
    Li X, Kang M, Han X, Wang J, Xu P (2014) Enhanced photocatalytic activity of titanium dioxide: modification with graphene oxide and reduced graphene oxide. Chem Lett 43:871–873. doi: 10.1246/cl.140063 CrossRefGoogle Scholar
  10. 10.
    Shen J, Wu Y, Fu L, Zhang B, Li F (2014) Preparation of doped TiO2 nanofiber membranes through electrospinning and their application for photocatalytic degradation of malachite green. J Mater Sci 49:2303–2314. doi: 10.1007/s10853-013-7928-y CrossRefGoogle Scholar
  11. 11.
    Peining Z, Nair AS, Shengjie P, Shengyuan Y, Ramakrishna S (2012) Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl Mater Interfaces 4:581–585. doi: 10.1021/am201448p CrossRefGoogle Scholar
  12. 12.
    Doh SJ, Kim C, Lee SG, Lee SJ, Kim H (2008) Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants. J Hazard Mater 154:118–127. doi: 10.1016/j.jhazmat.2007.09.118 CrossRefGoogle Scholar
  13. 13.
    Martins PM, Gomez V, Lopes AC, Tavares CJ, Botelho G, Irusta S et al. (2014) Improving photocatalytic performance and recyclability by development of Er-doped and Er/Pr-codoped TiO2/poly(vinylidene difluoride)–trifluoroethylene composite membranes. J Phys Chem C 118:27944–27953. doi: 10.1021/jp509294v CrossRefGoogle Scholar
  14. 14.
    Botelho G, Silva MM, Gonçalves AM, Sencadas V, Serrado-Nunes J, Lanceros-Mendez S (2008) Performance of electroactive poly(vinylidene fluoride) against UV radiation. Polym Test 27:818–822. doi: 10.1016/j.polymertesting.2008.06.006 CrossRefGoogle Scholar
  15. 15.
    Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Grácio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem Mater 21:4796–4802. doi: 10.1021/cm901052s CrossRefGoogle Scholar
  16. 16.
    Zhang H, Lv X, Li Y, Wang Y, Li J (2010) P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–386. doi: 10.1021/nn901221k CrossRefGoogle Scholar
  17. 17.
    Sencadas V, Ribeiro C, Nunes-Pereira J, Correia V, Lanceros-Méndez S (2012) Fiber average size and distribution dependence on the electrospinning parameters of poly(vinylidene fluoride-trifluoroethylene) membranes for biomedical applications. Appl Phys A Mater Sci Process 109:685–691. doi: 10.1007/s00339-012-7101-5 CrossRefGoogle Scholar
  18. 18.
    Marques J, Oliveira LF, Pinto RT, Coutinho PJG, Parpot P, Góis JR et al. (2013) Release of volatile compounds from polymeric microcapsules mediated by photocatalytic nanoparticles. Int J Photoenergy 2013:1–9. doi: 10.1155/2013/712603 CrossRefGoogle Scholar
  19. 19.
    Yu J, Wang G, Cheng B, Zhou M (2007) Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders. Appl Catal B Environ 69:171–180. doi: 10.1016/j.apcatb.2006.06.022 CrossRefGoogle Scholar
  20. 20.
    Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J et al. (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154. doi: 10.1016/j.elspec.2014.07.003 CrossRefGoogle Scholar
  21. 21.
    Ohno T, Sarukawa K, Tokieda K, Matsumura M (2001) Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J Catal 203:82–86. doi: 10.1006/jcat.2001.3316 CrossRefGoogle Scholar
  22. 22.
    Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon N Y 46:1994–1998. doi: 10.1016/j.carbon.2008.08.013 CrossRefGoogle Scholar
  23. 23.
    Li B, Cao H (2011) ZnO@graphene composite with enhanced performance for the removal of dye from water. J Mater Chem 21:3346–3349. doi: 10.1039/C0JM03253K CrossRefGoogle Scholar
  24. 24.
    Compton OC, Jain B, Dikin DA, Abouimrane A, Amine K, Nguyen ST (2011) Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano 5:4380–4391. doi: 10.1021/nn1030725 CrossRefGoogle Scholar
  25. 25.
    Shen J, Yan B, Shi M, Ma H, Li N, Ye M (2011) One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J Mater Chem 21:3415–3421. doi: 10.1039/c0jm03542d CrossRefGoogle Scholar
  26. 26.
    Nguyen-Phan T-D, Pham VH, Shin EW, Pham H-D, Kim S, Chung JS et al. (2011) The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chem Eng J 170:226–232. doi: 10.1016/j.cej.2011.03.060 CrossRefGoogle Scholar
  27. 27.
    Yu J, Su Y, Cheng B, Zhou M (2006) Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method. J Mol Catal A: Chem 258:104–112. doi: 10.1016/j.molcata.2006.05.036 CrossRefGoogle Scholar
  28. 28.
    Wang G, Xu L, Zhang J, Yin T, Han D (2012) Enhanced photocatalytic activity of powders (P25) via calcination treatment. Int J Photoenergy 2012:1–9. doi: 10.1155/2012/265760 Google Scholar
  29. 29.
    Williams G, Seger B, Kamat PV (2008) TiO2–graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491. doi: 10.1021/nn800251f CrossRefGoogle Scholar
  30. 30.
    Wang X, Wang J, Dong X, Zhang F, Ma L, Fei X et al. (2016) Synthesis and catalytic performance of hierarchical TiO2 hollow sphere/reduced graphene oxide hybrid nanostructures. J Alloys Compd 656:181–188. doi: 10.1016/j.jallcom.2015.09.241 CrossRefGoogle Scholar
  31. 31.
    Tan L-L, Ong W-J, Chai S-P, Goh BT, Mohamed AR (2015) Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl Catal B Environ 179:160–170. doi: 10.1016/j.apcatb.2015.05.024 CrossRefGoogle Scholar
  32. 32.
    Maruthamani D, Divakar D, Kumaravel M (2015) Enhanced photocatalytic activity of TiO2 by reduced graphene oxide in mineralization of Rhodamine B dye. J Ind Eng Chem 30:33–43. doi: 10.1016/j.jiec.2015.04.026 CrossRefGoogle Scholar
  33. 33.
    Hoffmann M, Martin S, Choi W (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  34. 34.
    Calza P, Hadjicostas C, Sakkas VA, Sarro M, Minero C, Medana C et al. (2016) Photocatalytic transformation of the antipsychotic drug risperidone in aqueous media on reduced graphene oxide—TiO2 composites. Appl Catal B Environ 183:96–106. doi: 10.1016/j.apcatb.2015.10.010 CrossRefGoogle Scholar
  35. 35.
    Salzmann I, Heimel G (2015) Toward a comprehensive understanding of molecular doping organic semiconductors (review). J Electron Spectrosc Relat Phenomena 204:208–222. doi: 10.1016/j.elspec.2015.05.001 CrossRefGoogle Scholar
  36. 36.
    Yu H, Jiao Z, Hu H, Lu G, Ye J, Bi Y (2013) Fabrication of Ag3PO4–PAN composite nanofibers for photocatalytic applications. CrystEngComm 15:4802–4805. doi: 10.1039/c3ce00073g CrossRefGoogle Scholar
  37. 37.
    Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706. doi: 10.1016/j.progpolymsci.2013.07.006 CrossRefGoogle Scholar
  38. 38.
    Cossich E, Bergamasco R, Pessoa de Amorim MT, Martins PM, Marques J, Tavares CJ et al. (2015) Development of electrospun photocatalytic TiO2–polyamide-12 nanocomposites. Mater Chem Phys 164:91–97. doi: 10.1016/j.matchemphys.2015.08.029 CrossRefGoogle Scholar
  39. 39.
    García-Gutiérrez M-C, Linares A, Martín-Fabiani I, Hernández JJ, Soccio M, Rueda DR et al. (2013) Understanding crystallization features of P(VDF-TrFE) copolymers under confinement to optimize ferroelectricity in nanostructures. Nanoscale 5:6006–6012. doi: 10.1039/c3nr00516j CrossRefGoogle Scholar
  40. 40.
    Adamu H, Dubey P, Anderson JA (2016) Probing the role of thermally reduced graphene oxide in enhancing performance of TiO2 in photocatalytic phenol removal from aqueous environments. Chem Eng J 284:380–388. doi: 10.1016/j.cej.2015.08.147 CrossRefGoogle Scholar
  41. 41.
    Pant HR, Adhikari SP, Pant B, Joshi MK, Kim HJ, Park CH et al. (2015) Immobilization of TiO2 nanofibers on reduced graphene sheets: novel strategy in electrospinning. J Colloid Interface Sci 457:174–179. doi: 10.1016/j.jcis.2015.06.043 CrossRefGoogle Scholar
  42. 42.
    Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol C Photochem Rev 15:1–20. doi: 10.1016/j.jphotochemrev.2012.10.001 CrossRefGoogle Scholar
  43. 43.
    Pastrana-Martínez LM, Morales-Torres S, Likodimos V, Figueiredo JL, Faria JL, Falaras P et al. (2012) Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Catal B Environ 123–124:241–256. doi: 10.1016/j.apcatb.2012.04.045 CrossRefGoogle Scholar
  44. 44.
    Cao Y, Fu Z, Wei W, Zou L, Mi T, He D et al. (2015) Reduced graphene oxide supported titanium dioxide nanomaterials for the photocatalysis with long cycling life. Appl Surf Sci 355:1289–1294. doi: 10.1016/j.apsusc.2015.08.036 CrossRefGoogle Scholar
  45. 45.
    Anjusree GS, Deepak TG, Nair SV, Nair AS (2015) Facile fabrication of TiO2 nanoparticle–TiO2 nanofiber composites by co-electrospinning–electrospraying for dye-sensitized solar cells. J Energy Chem 000:1–8. doi: 10.1016/j.jechem.2015.11.001 Google Scholar
  46. 46.
    Putri LK, Ong W-J, Chang WS, Chai S-P (2015) Heteroatom doped graphene in photocatalysis: a review. Appl Surf Sci 358:2–14. doi: 10.1016/j.apsusc.2015.08.177 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nuno A. Almeida
    • 1
  • Pedro M. Martins
    • 2
  • Sara Teixeira
    • 3
  • José A. Lopes da Silva
    • 4
  • Vitor Sencadas
    • 2
  • K. Kühn
    • 3
  • G. Cuniberti
    • 3
    • 5
    • 6
  • S. Lanceros-Mendez
    • 2
    • 7
  • Paula A. A. P. Marques
    • 1
  1. 1.TEMA/Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal
  2. 2.Centre/Departament of PhysicsUniversity of MinhoBragaPortugal
  3. 3.Institute for Materials Science and Max Bergmann Center of BiomaterialsTU DresdenDresdenGermany
  4. 4.QOPNA/Chemistry Department of ChemistryUniversity of AveiroAveiroPortugal
  5. 5.Dresden Center for Computational Materials Science (DCCMS)TU DresdenDresdenGermany
  6. 6.Center for Advancing Electronics DresdenTU DresdenDresdenGermany
  7. 7.BC Materials, Parque Científico y Tecnológico de BizkaiaDerioSpain

Personalised recommendations