Advertisement

Journal of Materials Science

, Volume 51, Issue 14, pp 6750–6760 | Cite as

Energy transfer between Dy3+ and Eu3+ in Dy3+/Eu3+-codoped Gd2MoO6

  • S. Dutta
  • S. K. Sharma
Original Paper

Abstract

Dy3+-doped and Dy3+/Eu3+-codoped Gd2MoO6 phosphors were synthesized by hydrothermal method. The results of X-ray diffraction indicate that the Gd2MoO6 phosphors have crystallized with the monoclinic structure. The emission spectra exhibit emissions at 577 nm and 488 nm that corresponded to the yellow and blue emissions, respectively. The emission intensity of these bands increases with the rise of the Dy3+ up to a particular concentration and then reduces at a higher level. The observed behaviour was explained on the basis of concentration quenching phenomena. The enhancement in the emission intensity of the Dy3+ with the addition of Eu3+ along with the red emission at 617 nm for Eu3+ was noted. The energy transfer between the two rare earth ions was studied. Codoping with the trivalent Eu ions neutralized the red emission part of the phosphor. Thus, by incorporating the adequate quantity of Eu3+ the photometric characteristics of the phosphors can be adjusted.

Keywords

Excitation Spectrum Gd2O3 Charge Transfer Band Dy2O3 Codoped Phosphor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are thankful to the Department of Science and Technology, New Delhi (Government of India), for funding this work under the Project SR/FTP/PS-087/2010.

References

  1. 1.
    Xie RJ, Hirosaki N, Kimura N, Sakuma K, Mitomo M (2007) 2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors. Appl Phys Lett 90:191101CrossRefGoogle Scholar
  2. 2.
    Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin, p 25CrossRefGoogle Scholar
  3. 3.
    Adachi S, Takahashi T (2008) Direct synthesis and properties of K2SiF6:Mn4+ phosphor by wet chemical etching of Si wafer. J Appl Phys 104:023512CrossRefGoogle Scholar
  4. 4.
    Som S, Kunti AK, Vijay Kumar, Vinod Kumar, Dutta S, Chowdhury M, Sharma SK, Terblans JJ, Swart HC (2014) Defect correlated fluorescent quenching and electron phonon coupling in the spectral transition of Eu3+ in CaTiO3 for red emission in display application. J Appl Phys 115:193101CrossRefGoogle Scholar
  5. 5.
    Mishra YK, Kaps S, Schuchardt A, Paulowicz I, Jin X, Gedamu D, Freitag S, Claus M, Wille S, Kovalev A, Gorb SN, Adelung R (2013) Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach. Part Part Syst Charact 30:775–783CrossRefGoogle Scholar
  6. 6.
    Park W, Summers CJ (2002) Photoluminescence properties of red emitting BaGdB9O16: Eu phosphor. J Mater Sci 37:4041–4045CrossRefGoogle Scholar
  7. 7.
    Mohapatra S, Mishra YK, Avasthi DK, Kabiraj D, Ghatak J, Varma S (2008) Synthesis of gold–silicon core–shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett 92:103105CrossRefGoogle Scholar
  8. 8.
    Jin X, Götz M, Wille S, Mishra YK, Adelung R, Zollfrank C (2013) A novel concept for self-reporting materials: stress sensitive photoluminescence in ZnO tetrapod filled elastomers. Adv Mater 25:1342–1347CrossRefGoogle Scholar
  9. 9.
    Daicho H, Iwasaki T, Enomoto K, Sasaki Y, Maeno Y, Shinomiya Y, Aoyagi S, Nishibori E, Sakata M, Sawa H, Matsuishi S, Hosono H (2012) A novel phosphor for glareless white light-emitting diodes. Nat Commun 3:1132CrossRefGoogle Scholar
  10. 10.
    Pimputkar S, Speck JS, DenBaars SP, Nakamura S (2009) Prospects for LED lighting. Nat Photonics 3:180–182CrossRefGoogle Scholar
  11. 11.
    Pust P, Weiler V, Hecht C, Tücks A, Wochnik AS, Henß AK, Wiechert D, Scheu C, Schmidt PJ, Schnick W (2014) Narrow-band red-emitting Sr[LiAl3N4]: Eu2+ as a next-generation LED-phosphor material. Nat Mater 13:891–896CrossRefGoogle Scholar
  12. 12.
    Tan ST, Sun XW, Demir HV, DenBaars SP (2012) Advances in the LED materials and architectures for energy-saving solid-state lighting toward ‘lighting revolution’. IEEE Photonics J 4:613–619CrossRefGoogle Scholar
  13. 13.
    Gao D, Li Y, Lai X, Wei Y, Bi J, Li Y, Liu M (2011) Fabrication and luminescence properties of Dy3+ doped CaMoO4 powders. Mater Chem Phys 126:391–397CrossRefGoogle Scholar
  14. 14.
    Zhu H, Lin CC, Luo W, Shu S, Liu Z, Liu Y, Kong J, Ma E, Cao Y, Liu RS, Chen X (2014) Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat Commun 5:4312Google Scholar
  15. 15.
    He XH, Lian N, Sun JH, Guan MY (2009) Dependence of luminescence properties on composition of rare-earth activated (oxy) nitrides phosphors for white-LEDs applications. J Mater Sci 44:4763–4775CrossRefGoogle Scholar
  16. 16.
    Das S, Reddy AA, Babu SS, Prakash GV (2011) Controllable white light emission from Dy3+–Eu3+ co-doped KCaBO3 phosphor. J Mater Sci 46:7770–7775CrossRefGoogle Scholar
  17. 17.
    Nakamura S, Fasol G (1997) The blue laser diode. Springer, New YorkCrossRefGoogle Scholar
  18. 18.
    Baig N, Dhoble NS, Park K, Kokode NS, Dhoble SJ (2014) Enhanced luminescence and white light emission from Eu3+-co-doped K3Ca2(SO4)3Cl:Dy3+ phosphor with near visible ultraviolet excitation for white LEDs. Luminescence 30:479–484CrossRefGoogle Scholar
  19. 19.
    Liu Y, Liu G, Dong X, Wang J, Yu W (2015) Tunable photoluminescence and magnetic properties of Dy3+ and Eu3+ doped GdVO4 multifunctional phosphors. Phys Chem Chem Phys 17:26638–26644CrossRefGoogle Scholar
  20. 20.
    Niu X, Xun J, Zhang Y (2015) The spectroscopic properties of Dy3+ and Eu3+ co-doped Y3Al5O12 (YAG) phosphors for white LED. Prog Nat Sci Mater Int 25:209–214CrossRefGoogle Scholar
  21. 21.
    Das S, Reddy AA, Prakash GV (2012) Near white light emission from K+ ion compensated CaSO4:Dy3+, Eu3+ phosphors. Ceram Int 38:5769–5773CrossRefGoogle Scholar
  22. 22.
    Som S, Mitra P, Kumar V, Kumar V, Terblans JJ, Swart HC, Sharma SK (2014) The energy transfer phenomena and colour tunability in Y2O2S:Eu3+/Dy3+ micro-fibers for white emission in solid state lighting applications. Dalton Trans 43:9860–9871CrossRefGoogle Scholar
  23. 23.
    Das S, Yang CY, Lu CH (2013) Structural and optical properties of tunable warm-white light-emitting ZrO2:Dy3+–Eu3+ nanocrystals. J Am Ceram Soc 96:1602–1609CrossRefGoogle Scholar
  24. 24.
    Sharma V, Das A, Kumar V, Ntwaeaborwa OM, Swart HC (2014) Potential of Sr4Al14O25: Eu2+, Dy3+ inorganic oxide-based nanophosphor in Latent fingermark detection. J Mater Sci 49:2225–2234CrossRefGoogle Scholar
  25. 25.
    Chen F, Liu X (2013) Structure and photoluminescence properties of La2Mo(W)O6:Eu3+ as red phosphors for white LED applications. Opt Mater 35:2716–2720CrossRefGoogle Scholar
  26. 26.
    Suzuki S, Ryo M, Yamamoto T, Sakata T, Yanagida S, Wada Y (2007) Preparation of luminescent nanosized NaEu(MoO4)2 incorporated in amorphous matrix originated from zeolite. J Mater Sci 42:5991–5998CrossRefGoogle Scholar
  27. 27.
    Wang M, Zhang H, Li L, Liu X, Hong F, Li R, Song H, Gui M, Shen J, Zhu W, Wang J, Zhou L, Jeong JH (2014) Charge transfer bands of Mo–O and photoluminescence properties of micro-material Y2MoO6:Eu3+ red phosphor. J. Alloys Compd 585:138–145CrossRefGoogle Scholar
  28. 28.
    Dutta S, Som S, Sharma SK (2013) Luminescence and photometric characterization of K+ compensated CaMoO4:Dy3+ nanophosphors. Dalton Trans 42:9654CrossRefGoogle Scholar
  29. 29.
    Huang MN, Ma YY, Huang XY, Ye S, Zhang QY (2013) The luminescence properties of Bi3+ sensitized Gd2MoO6: RE3+(RE = Eu or Sm) phosphors for solar spectral conversion. Spectrochim Acta, Part A 115:767–771CrossRefGoogle Scholar
  30. 30.
    Chen Y, Wang J, Liu C, Kuang X, Su Q (2011) A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes. Appl Phys Lett 98:081917CrossRefGoogle Scholar
  31. 31.
    Liu B, Shi C, Qi Z (2005) Potential white-light long-lasting phosphor: Dy3+-doped aluminate. Appl Phys Lett 86:191111CrossRefGoogle Scholar
  32. 32.
    Bedyal AK, Kumar V, Sharma V, Singh F, Lochab SP, Ntwaeaborwa OM, Swart HC (2014) Swift heavy ion induced structural, optical and luminescence modification in NaSrBO3:Dy3+ phosphor. J Mater Sci 49:6404–6412CrossRefGoogle Scholar
  33. 33.
    Liu Q, Liu Y, Yang Z, Han Y, Li X, Fu G (2012) Multiwavelength excited white-emitting phosphor Dy3+-activated Ba3Bi(PO4)3. J. Alloys Compd 515:16–19CrossRefGoogle Scholar
  34. 34.
    Viola MDC, Sangra AM, Pedregosa JC (1993) Vibrational spectroscopic characterization of lanthanide molybdates. J Mater Sci 28:6587–6590CrossRefGoogle Scholar
  35. 35.
    Tian Y, Chen B, Hua R, Sun J, Cheng L, Zhong H, Li X, Zhang J, Zheng Y, Yu T, Huang L, Yu H (2011) Optical transition, electron-phonon coupling and fluorescent quenching of La2 (MoO4)3: Eu3+ phosphor. J Appl Phys 109:053511CrossRefGoogle Scholar
  36. 36.
    Wan J, Cheng L, Sun J, Zhong H, Li X, Lu W, Tian Y, Lin H, Chen B (2010) Energy transfer and colorimetric properties of Eu3+/Dy3+ codoped Gd2(MoO4)3 phosphors. J. Alloys Compd 496:331–334CrossRefGoogle Scholar
  37. 37.
    Wu Y, Wang Y, He D, Fu M, Zhao Y, Li Y, Miao F (2011) Synthesis and luminescence properties of Sr2SiO4: Eu3+, Dy3+ phosphors by the sol–gel method. J Nanosci Nanotechnol 11:9439–9444CrossRefGoogle Scholar
  38. 38.
    Gedamu D, Paulowicz I, Kaps S, Lupan O, Wille S, Haidarschin G, Mishra YK, Adelung R (2014) Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors. Adv Mater 26:1541–1550CrossRefGoogle Scholar
  39. 39.
    Liu X, Li L, Noh HM, Moon BK, Choib BC, Jeong JH (2014) Chemical bond properties and charge transfer bands of O2−–Eu3+, O2−–Mo6+ and O2−–W6+ in Eu3+-doped garnet hosts Ln3M5O12 and ABO4 molybdate and tungstate phosphors. Dalton Trans 43:8814–8825CrossRefGoogle Scholar
  40. 40.
    Wang J, Ning G, Gong W, Ye J, Lin Y (2011) Synthesis and luminescence properties of a novel Eu3+, Tb3+ codoped Al18B4O33 whiskers by a gel nano-coating method. J Mater Sci 46:1259–1263CrossRefGoogle Scholar
  41. 41.
    Som S, Sharma SK (2012) Eu3+/Tb3+ codoped Y2O3 nanophosphors: rietveld refinement, Bandgap and Photoluminescence optimization. J Phys D Appl Phys 45:415102CrossRefGoogle Scholar
  42. 42.
    Xie RJ, Hirosaki N (2007) Silicon-based oxynitride and nitride phosphors for white LEDs—a review. Sci Technol Adv Mater 8:588–600CrossRefGoogle Scholar
  43. 43.
    Zhuang Z, Guo X, Liu B, Hu F, Li Y, Tao T, Dai J, Zhi T, Xie Z, Chen P, Chen D, Ge H, Wang X, Xiao M, Shi Y, Zheng Y, Zhang R (2016) High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes. Adv Funct Mater 26:36–43CrossRefGoogle Scholar
  44. 44.
    Bhaviripudi S, Qi J, Hu EL, Belcher AM (2007) Synthesis, characterization, and optical properties of ordered arrays of III-nitride nanocrystals. Nano Lett 7:3512–3517CrossRefGoogle Scholar
  45. 45.
    Grum F, Saunders SB, Macadam DL (1978) Concept of correlated color temperature. Color Res Appl 3:17–21CrossRefGoogle Scholar
  46. 46.
    Liu WR, Huang CH, Wu CP, Chiu YC, Yeh YT, Chen TM (2011) High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes. J Mater Chem 21:6869–6874CrossRefGoogle Scholar
  47. 47.
    Achermann M, Petruska MA, Kos S, Smith DL, Koleske DD, Klimov VI (2004) Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429:642–646CrossRefGoogle Scholar
  48. 48.
    Dutta S, Som S, Sharma SK (2015) Excitation spectra and luminescence decay analysis of K+ compensated Dy3+ doped CaMoO4 phosphors. RSC Adv 5:7380CrossRefGoogle Scholar
  49. 49.
    Lv X, Xue X, Huang Y, Zhuang Z, Lin Z (2014) The relationship between photoluminescence (PL) decay and crystal growth kinetics in thioglycolic acid (TGA) capped CdTe quantum dots (QDs). Phys Chem Chem Phys 16:11747–11753CrossRefGoogle Scholar
  50. 50.
    Califano M (2015) Origins of photoluminescence decay kinetics in CdTe colloidal quantum dots. ACS Nano 9:2960–2967CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Applied PhysicsIndian School of MinesDhanbadIndia

Personalised recommendations