Advertisement

Journal of Materials Science

, Volume 51, Issue 14, pp 6607–6623 | Cite as

Exploration of the mechanisms of temperature-dependent grain boundary mobility: search for the common origin of ultrafast grain boundary motion

  • C. J. O’Brien
  • S. M. Foiles
Original Paper

Abstract

The temperature dependence of grain boundary mobility is complex, varied, and rarely fits ideal Arrhenius behavior. This work presents a series of case studies of planar grain boundaries in a model FCC system that were previously demonstrated to exhibit a variety of temperature-dependent mobility behaviors. It is demonstrated that characterization of the mobility versus temperature plots is not sufficient to predict the atomic motion mechanism of the grain boundaries. Herein, the temperature-dependent motion and atomistic motion mechanisms of planar grain boundaries are driven by a synthetic, orientation-dependent, driving force. The systems studied include CSL boundaries with \(\Sigma \) values of 5, 7, and 15, including both symmetric and asymmetric boundaries. These boundaries represent a range of temperature-dependent trends including thermally activated, antithermal, and roughening behaviors. Examining the atomic-level motion mechanisms of the thermally activated boundaries reveals that each involves a complex shuffle, and at least one atom that changes the plane it resides on. The motion mechanism of the antithermal boundary is qualitatively different and involves an in-plane coordinated shuffle that rotates atoms about a fixed atom lying on a point in the coincident site lattice. This provides a mechanistic reason for the observed high mobility, even at low temperatures, which is due to the low activation energy needed for such motion. However, it will be demonstrated that this mechanism is not universal, or even common, to other boundaries exhibiting non-thermally activated motion. This work concludes that no single atomic motion mechanism is sufficient to explain the existence of non-thermally activated boundary motion.

Keywords

Motion Mechanism Boundary Motion Rotation Center Diffusive Motion Tilt Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank D.C. Bufford, T.A. Furnish, F. Abdeljawad, B.L. Boyce, and K. Hattar for their time in reviewing and providing insightful comments on the manuscript making it clearer and more applicable to a wider audience. The work was fully supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division, under FWP Award #15013170. Work was performed at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2016_9944_MOESM1_ESM.mp4 (19.5 mb)
The animation contained in ESM_1.mp4 is separated into four panes illustrating boundary motion with various metrics. The animation is of B; a \(\Sigma 7\) \((12\,3\,1)/(9\,8\,3)\) boundary that exhibits antithermal motion. The uppermost frame shows a perspective view of the entire system illustrating the rate and direction of boundary motion and is colored by the CentroSymmetry Parameter (CSP) [18]. The CSP coloring illustrates the deviation from the perfect FCC structure of the regions surrounding an atom, a non-zero value indicates that the immediate neighborhood of an atom is plastically deformed. The second pane again shows the CSP but only including the atoms lying in a close-packed plane common to both crystals. The next pane shows the propagation of the grain boundary along a close-packed plane colored by microrotation [45]. This metric colors atoms only by the rotation of their immediate environment. This pane contains the same information as Fig. 9, but oriented identically to the other panes in the animation. The bottom pane reproduces Fig. 6 which is colored by magnitude of the slip-vector [55]. The slip-vector is similar to an atom’s Burger’s vector. It measures the deformation between an atom and it neighbors. The slip-vector is additive so that it retains information regarding the deformation history of the atom. Supplementary material 1 (MP4 20018 kb)

References

  1. 1.
    Babcock S, Balluffi R (1989) Grain boundary kinetics—I. In situ observations of coupled grain boundary dislocation motion, crystal translation and boundary displacement. Acta Metall 37(9):2357–2365. doi: 10.1016/0001-6160(89)90033-3 CrossRefGoogle Scholar
  2. 2.
    Babcock S, Balluffi R (1989) Grain boundary kinetics—II. In situ observations of the role of grain boundary dislocations in high-angle boundary migration. Acta Metall 37(9):2367–2376. doi: 10.1016/0001-6160(89)90034-5 CrossRefGoogle Scholar
  3. 3.
    Bulatov VV, Reed BW, Kumar M (2014) Grain boundary energy function for fcc metals. Acta Mater 65:161–175. doi: 10.1016/j.actamat.2013.10.057 CrossRefGoogle Scholar
  4. 4.
    Cantwell PR, Holm EA, Harmer MP, Hoffmann MP (2015) Anti-thermal behavior of materials. Scripta Mater 103:1–5. doi: 10.1016/j.scriptamat.2015.02.011 CrossRefGoogle Scholar
  5. 5.
    Christian JW (1994) Crystallographic theories, interface structures, and transformation mechanisms. Metall Mater Trans A 25(9):1821–1839. doi: 10.1007/BF02649031 CrossRefGoogle Scholar
  6. 6.
    Coleman SP, Spearot DE, Foiles SM (2014) The effect of synthetic driving force on the atomic mechanisms associated with grain boundary motion below the interface roughening temperature. Comput Mater Sci 86:38–42. doi: 10.1016/j.commatsci.2014.01.022 CrossRefGoogle Scholar
  7. 7.
    Deng C, Schuh CA (2011) Atomistic simulation of slow grain boundary motion. Phys Rev Lett 106(4):045–503. doi: 10.1103/PhysRevLett.106.045503 CrossRefGoogle Scholar
  8. 8.
    Foiles SM, Hoyt JJ (2006) Computation of grain boundary stiffness and mobility from boundary fluctuations. Acta Mater 54(12):3351–3357. doi: 10.1016/j.actamat.2006.03.037 CrossRefGoogle Scholar
  9. 9.
    Gottstein G, Shvindlerman LS (2010) Grain boundary migration in metals, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  10. 10.
    Hirth JP, Pond RC, Lothe J (2006) Disconnections in tilt walls. Acta Mater 54(16):4237–4245. doi: 10.1016/j.actamat.2006.05.017 CrossRefGoogle Scholar
  11. 11.
    Holm EA, Miodownik MA, Rollett AD (2003) On abnormal subgrain growth and the origin of recrystallization nuclei. Acta Mater 51(9):2701–2716. doi: 10.1016/S1359-6454(03)00079-X CrossRefGoogle Scholar
  12. 12.
    Homer ER, Holm EA, Foiles SM, Olmsted DL (2014) Trends in grain boundary mobility: survey of motion mechanisms. JOM 66(1):114–120. doi: 10.1007/s11837-013-0801-2 CrossRefGoogle Scholar
  13. 13.
    Homer ER, Patala S, Priedeman JL (2015) Grain boundary plane orientation fundamental zones and structure-property relationships. Sci Rep 5:15–476. doi: 10.1038/srep15476 CrossRefGoogle Scholar
  14. 14.
    Hoyt JJ (2014) Atomistic simulations of grain and interphase boundary mobility. Model Simul Mater Sci Eng 22:001–033. doi: 10.1088/0965-0393/22/3/033001 CrossRefGoogle Scholar
  15. 15.
    Janssens KGF, Olmsted D, Holm EA, Foiles SM, Plimpton SJ, Derlet PM (2006) Computing the mobility of grain boundaries. Nat Mater 5(2):124–127. doi: 10.1038/nmat1559 CrossRefGoogle Scholar
  16. 16.
    Jhan RJ, Bristowe P (1990) A molecular dynamics study of grain boundary migration without the participation of secondary grain boundary dislocations. Scr Metall Mater 24(7):1313–1318. doi: 10.1016/0956-716X(90)90348-K CrossRefGoogle Scholar
  17. 17.
    Jung SH, Yoon DY, Kang SJL (2013) Mechanism of abnormal grain growth in ultrafine-grained nickel. Acta Mater 61(15):5685–5693. doi: 10.1016/j.actamat.2013.06.010 CrossRefGoogle Scholar
  18. 18.
    Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B Condens Matter Mater Phys 58(17):11085–11088. doi: 10.1103/PhysRevB.58.11085 CrossRefGoogle Scholar
  19. 19.
    Lobkovsky AE, Karma A, Mendelev MI, Haataja M, Srolovitz DJ (2004) Grain shape, grain boundary mobility and the Herring relation. Acta Mater 52(2):285–292. doi: 10.1016/j.actamat.2003.09.012 CrossRefGoogle Scholar
  20. 20.
    Mendelev MI, Deng C, Schuh CA, Srolovitz DJ (2013) Comparison of molecular dynamics simulation methods for the study of grain boundary migration. Modell Simul Mater Sci Eng 21(4):017–045. doi: 10.1088/0965-0393/21/4/045017 CrossRefGoogle Scholar
  21. 21.
    Merkle KL, Thompson LJ (2001) Atomic-scale observation of grain boundary motion. Mater Lett 48:188–193. doi: 10.1016/S0167-577X(00)00301-3 CrossRefGoogle Scholar
  22. 22.
    Molodov D, Czubayko U, Gottstein G, Shvindlerman L (1995) Mobility of \(\langle 111 \rangle \) tilt grain boundaries in the vicinity of the special misorientation \(\Sigma = 7\) in bicrystals of pure aluminium. Scr Metall Mater 32(4):529–534. doi: 10.1016/0956-716X(95)90832-5 CrossRefGoogle Scholar
  23. 23.
    Molodov DA, Czubayko U, Gottstein G, Shvindlerman LS (1997) Abnormal kinetic properties of grain boundaries in Al doped with Pb: grain boundary motion and thermal extraction of Pb. In: Mehrer H, Herzig C, Stolwijk NA, Bracht H (eds) Defect and diffusion forum, vol 143–147. Trans Tech, Switzerland, pp 1493–1498. doi: 10.4028/www.scientific.net/DDF.143-147 Google Scholar
  24. 24.
    Molodov DA, Gorkaya T, Gottstein G (2011) Migration of the \(\Sigma 7\) tilt grain boundary in Al under an applied external stress. Scr Mater 65(11):990–993. doi: 10.1016/j.scriptamat.2011.08.030 CrossRefGoogle Scholar
  25. 25.
    Olmsted DL, Foiles SM, Holm EA (2007) Grain boundary interface roughening transition and its effect on grain boundary mobility for non-faceting boundaries. Scr Mater 57(12):1161–1164. doi: 10.1016/j.scriptamat.2007.07.045 CrossRefGoogle Scholar
  26. 26.
    Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57(13):3694–3703. doi: 10.1016/j.actamat.2009.04.007 CrossRefGoogle Scholar
  27. 27.
    Olmsted DL, Holm EA, Foiles SM (2009) Survey of computed grain boundary properties in face-centered cubic metals—II: Grain boundary mobility. Acta Mater 57(13):3704–3713. doi: 10.1016/j.actamat.2009.04.015 CrossRefGoogle Scholar
  28. 28.
    Phillpot SR, Wolf D, Gleiter H (1995) A structural model for grain boundaries in nanocrystalline materials. Scr Metall Mater 33(8):1245–1251. doi: 10.1016/0956-716X(95)00350-5 CrossRefGoogle Scholar
  29. 29.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. doi: 10.1006/jcph.1995.1039 CrossRefGoogle Scholar
  30. 30.
    Pond RC, Celotto S (2003) Special interfaces: military transformations. Int Mater Rev 48(4):225–245. doi: 10.1179/095066003225010245 CrossRefGoogle Scholar
  31. 31.
    Race CP, von Pezold J, Neugebauer J (2014) Role of the mesoscale in migration kinetics of flat grain boundaries. Phys Rev B 89(21):214110. doi: 10.1103/PhysRevB.89.214110 CrossRefGoogle Scholar
  32. 32.
    Ratanaphan S, Olmsted DL, Bulatov VV, Holm EA, Rollett AD, Rohrer GS (2015) Grain boundary energies in body-centered cubic metals. Acta Mater 88:346–354. doi: 10.1016/j.actamat.2015.01.069 CrossRefGoogle Scholar
  33. 33.
    Sansoz F, Dupont V (2006) Grain growth behavior at absolute zero during nanocrystalline metal indentation. Appl Phys Lett 89:11901. doi: 10.1063/1.2352725 CrossRefGoogle Scholar
  34. 34.
    Schönfelder B, Wolf D, Phillpot SR, Furtkamp M (1997) Molecular-dynamics method for the simulation of grain-boundary migration. Interface Sci 5(4):245–262. doi: 10.1023/A:1008663804495 CrossRefGoogle Scholar
  35. 35.
    Straumal B, Baretzky B (2004) Grain boundary phase transitions and their influence on properties of polycrystals. Interface Sci 12(2–3):147–155. doi: 10.1023/B:INTS.0000028645.30358.f5 CrossRefGoogle Scholar
  36. 36.
    Straumal BB, Rabkin E, Sursaeva VG, Goruakova AS (2005) Faceting and migration of twin grain boundaries in zinc. Zeitschrift für Metallkunde 96(2):161–166. doi: 10.3139/146.101014 CrossRefGoogle Scholar
  37. 37.
    Straumal BB, Sursaeva VG, Gornakova AS (2005) Influence of faceting-roughening on triple-junction migration in zinc. Zeitschrift für Metall 96(10):1147–1151. doi: 10.3139/146.101154 CrossRefGoogle Scholar
  38. 38.
    Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012. doi: 10.1088/0965-0393/18/1/015012 CrossRefGoogle Scholar
  39. 39.
    Sursaeva VG, Gornakova AS, Yashnikov VP, Straumal BB (2008) Motion of the faceted 57\(^\circ \) \([11\ \overline{2}\ 0]\) tilt grain boundary in zinc. J Mater Sci 43(11):3860–3866. doi: 10.1007/s10853-007-2223-4 CrossRefGoogle Scholar
  40. 40.
    Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Oxford University Press, New YorkGoogle Scholar
  41. 41.
    Sutton AP, Vitek V (1983) On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries. Philos Trans R Soc A: Math Phys Eng Sci 309(1506):1–36. doi: 10.1098/rsta.1983.0020 CrossRefGoogle Scholar
  42. 42.
    Sutton AP, Vitek V (1983) On the structure of tilt grain boundaries in cubic metals II. Asymmetrical tilt boundaries. Philos Trans R Soc A: Math Phys Eng Sci 309(1506):37–54. doi: 10.1098/rsta.1983.0021 CrossRefGoogle Scholar
  43. 43.
    Sutton AP, Vitek V (1983) On the structure of tilt grain boundaries in cubic metals. III. Generalizations of the structural study and implications for the properties of grain boundaries. Philos Trans R Soc A: Math Phys Eng Sci 309(1506):55–68. doi: 10.1098/rsta.1983.0022 CrossRefGoogle Scholar
  44. 44.
    Truhlar DG, Kohen A (2001) Convex Arrhenius plots and their interpretation. Proc Natl Acad Sci 98(3):848–851. doi: 10.1073/pnas.98.3.848 CrossRefGoogle Scholar
  45. 45.
    Tucker GJ, Zimmerman JA, McDowell DL (2011) Continuum metrics for deformation and microrotation from atomistic simulations: application to grain boundaries. Int J Eng Sci 49(12):1424–1434. doi: 10.1016/j.ijengsci.2011.03.019 CrossRefGoogle Scholar
  46. 46.
    Tucker GJ, Tiwari S, Zimmerman JA, McDowell DL (2012) Investigating the deformation of nanocrystalline copper with microscale kinematic metrics and molecular dynamics. J Mech Phys Solids 60(3):471–486. doi: 10.1016/j.jmps.2011.11.007 CrossRefGoogle Scholar
  47. 47.
    Ulomek F, Mohles V (2016) Separating grain boundary migration mechanisms in molecular dynamics simulations. Acta Mater 103:424–432. doi: 10.1016/j.actamat.2015.10.021 CrossRefGoogle Scholar
  48. 48.
    Ulomek F, O’Brien CJ, Foiles SM, Mohles V (2015) Energy conserving orientational force for determining grain boundary mobility. Modell Simul Mater Sci Eng 23:025007. doi: 10.1088/0965-0393/23/2/025007 CrossRefGoogle Scholar
  49. 49.
    Winning M, Gottstein G, Shvindlerman L (2002) On the mechanisms of grain boundary migration. Acta Mater 50:353–363. doi: 10.1016/S1359-6454(01)00343-3 CrossRefGoogle Scholar
  50. 50.
    Wolf D (2001) High-temperature structure and properties of grain boundaries: long-range vs. short-range structural effects. Curr Opin Solid State Mater Sci 5:435–443. doi: 10.1016/S1359-0286(01)00024-9 CrossRefGoogle Scholar
  51. 51.
    Yoon DY, Cho YK (2005) Roughening transition of grain boundaries in metals and oxides. J Mater Sci 40(4):861–870. doi: 10.1007/S10853-005-6502-7 CrossRefGoogle Scholar
  52. 52.
    Zhang H, Mendelev MI, Srolovitz DJ (2004) Computer simulation of the elastically driven migration of a flat grain boundary. Acta Mater 52(9):2569–2576. doi: 10.1016/j.actamat.2004.02.005 CrossRefGoogle Scholar
  53. 53.
    Zhang H, Srolovitz DJ, Douglas JF, Warren JA (2009) Grain boundaries exhibit the dynamics of glass-forming liquids. Proc Natl Acad Sci USA 106(19):7735–7740. doi: 10.1073/pnas.0900227106 CrossRefGoogle Scholar
  54. 54.
    Zhang K, Weertman JR, Eastman JA (2005) Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl Phys Lett 87(6):061921. doi: 10.1063/1.2008377 CrossRefGoogle Scholar
  55. 55.
    Zimmerman JA, Kelchner CL, Klein PA, Hamilton JC, Foiles SM (2001) Surface step effects on nanoindentation. Phys Rev Lett 87(16):165507. doi: 10.1103/PhysRevLett.87.165507 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations