Journal of Materials Science

, Volume 51, Issue 13, pp 6444–6451 | Cite as

Free surface effects on rotational deformation in nanocrystalline materials

  • I. A. Ovid’ko
  • A. G. SheinermanEmail author
Original Paper


Free surface effects on rotational deformation mediated by grain boundary dislocations in nanocrystalline materials are theoretically described. The critical stresses and characteristic geometric parameters for the rotational deformation occurring in nanocrystalline materials near their free surfaces are calculated and compared with those specifying the rotational deformation in bulk regions. The role of the free surface effects in the interpretation of electron microscopy data for plastically deformed nanocrystalline materials is discussed.


Free Surface Grain Boundary Triple Junction Nanocrystalline Material Dislocation Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Russian Science Foundation (Research Project 14-29-00199).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Koch CC (2007) Structural nanocrystalline materials: an overview. J Mater Sci 42:1403–1414. doi: 10.1007/s10853-006-0609-3 CrossRefGoogle Scholar
  2. 2.
    Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796. doi: 10.1007/s10853-006-0954-2 CrossRefGoogle Scholar
  3. 3.
    Ovid’ko IA (2007) Review on the fracture processes in nanocrystalline materials. J Mater Sci 42:1694–1708. doi: 10.1007/s10853-006-0968-9 CrossRefGoogle Scholar
  4. 4.
    Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline materials. Acta Mater 55:4041–4065CrossRefGoogle Scholar
  5. 5.
    Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724CrossRefGoogle Scholar
  6. 6.
    Zhu YT, Liao XZ, Wu X-L (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57:1–62CrossRefGoogle Scholar
  7. 7.
    Valiev RZ, Sabirov I, Zhilyaev AP, Langdon TG (2012) Bulk nanostructured metals for innovative applications. JOM 64:1134–1142CrossRefGoogle Scholar
  8. 8.
    Ovid’ko IA (2015) Mechanics of fracturing in nanoceramics. Phil Trans R Soc A 373:20140129CrossRefGoogle Scholar
  9. 9.
    Kawasaki M (2014) Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci 49:18–34. doi: 10.1007/s10853-013-7687-9 CrossRefGoogle Scholar
  10. 10.
    Chan T, Zhou Y, Brooks I, Palumbo G, Erb U (2014) Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni–Fe. J Mater Sci 49:3847–3859. doi: 10.1007/s10853-014-8099-1 CrossRefGoogle Scholar
  11. 11.
    Landgon TG, Zhilyaev AP (2014) Long-term self-annealing of copper and aluminium processed by high-pressure torsion. J Mater Sci 49:6529–6535. doi: 10.1007/s10853-014-8208-1 CrossRefGoogle Scholar
  12. 12.
    Ovid’ko IA, Sheinerman AG (2015) Effects of incoherent nanoinclusions on stress-driven migration of low-angle grain boundaries in nanocomposites. J Mater Sci 50:4430–4439. doi: 10.1007/s10853-015-9011-3 CrossRefGoogle Scholar
  13. 13.
    Karavaeva MV, Kiseleva SK, Ganeev AV, Protasova EO, Ganiev MM, Simonova LA, Valiev RZ (2015) Superior strength of carbon steel with an ultrafine-grained microstructure and its enhanced thermal stability. J Mater Sci 50:6730–6738. doi: 10.1007/s10853-015-9227-2 CrossRefGoogle Scholar
  14. 14.
    Yuan F, Wu X (2015) Size effect and atomistic deformation mechanisms of hierarchically nanotwinned fcc metals under nanoindentation. J Mater Sci 50:7557–7567. doi: 10.1007/s10853-015-9310-8 CrossRefGoogle Scholar
  15. 15.
    Ke M, Milligan WW, Hackney SA, Carsley JE, Aifantis EC (1995) Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostruct Mater 5:689–697CrossRefGoogle Scholar
  16. 16.
    Ovid’ko IA (2002) Deformation of nanostructures. Science 295:2386CrossRefGoogle Scholar
  17. 17.
    Murayama M, Howe JM, Hidaka H, Takaki S (2002) Atomic-Level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science 295:2433–2435CrossRefGoogle Scholar
  18. 18.
    Shan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305:654–657CrossRefGoogle Scholar
  19. 19.
    Gutkin MY, Ovid’ko IA (2004) Plastic deformation in nanocrystalline materials. Springer, BerlinCrossRefGoogle Scholar
  20. 20.
    Zizak I, Darowski N, Klaumunzer S, Schumacher G, Gerlach JW, Assmann W (2008) Ion-beam-induced collective rotation of nanocrystals. Phys Rev Lett 101:065503CrossRefGoogle Scholar
  21. 21.
    Ovid’ko IA, Sheinerman AG (2008) Special rotational deformation in nanocrystalline metals and ceramics. Scr Mater 59:119–122CrossRefGoogle Scholar
  22. 22.
    Cheng S, Zhao Y, Wang Y, Li Y, Wang X-L, Liaw PK, Lavernia EJ (2010) Structure modulation driven by cyclic deformation in nanocrystalline NiFe. Phys Rev Lett 104:255501CrossRefGoogle Scholar
  23. 23.
    Liu P, Mao SC, Wang LH, Han XD, Zhang Z (2011) Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline, textured, columnar-structured thin gold films. Scr Mater 64:343–346CrossRefGoogle Scholar
  24. 24.
    Wang L, Teng J, Liu P, Hirata A, Ma E, Zhang Z, Chen M, Han X (2014) Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun 5:4402Google Scholar
  25. 25.
    Han X, Wang L, Yue Y, Zhang Z (2015) In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals. Ultramicroscopy 151:94–100CrossRefGoogle Scholar
  26. 26.
    Jang D, Greer JR (2011) Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scr Mater 64:77–80CrossRefGoogle Scholar
  27. 27.
    Bobylev SV, Ovid’ko IA (2012) Grain boundary rotations in solids. Phys Rev Lett 109:175501CrossRefGoogle Scholar
  28. 28.
    Wouters O, Vellinga WP, Van Tijum R, de Hosson JTM (2005) On the evolution of surface roughness during deformation of polycrystalline aluminum alloys. Acta Mater 53:4043–4050CrossRefGoogle Scholar
  29. 29.
    Wouters O, Vellinga WP, Van Tijum R, de Hosson JTM (2006) Effects of crystal structure and grain orientation on the roughness of deformed polycrystalline metals. Acta Mater 54:2813–2821CrossRefGoogle Scholar
  30. 30.
    Romanov AE, Vladimirov VI (1992) Disclinations in crystalline solids. In: Nabarro FRN (ed) Dislocations in solids, vol 9. North Holland, Amsterdam, pp 191–402Google Scholar
  31. 31.
    Zhou K, Nazarov AA, Wu MS (2007) Competing relaxation mechanisms in a disclinated nanowire: temperature and size effects. Phys Rev Lett 98:035501CrossRefGoogle Scholar
  32. 32.
    Wu MS, Zhou K, Nazarov AA (2007) Crack nucleation at disclinated triple junctions. Phys Rev B 76:134105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Research Laboratory for Mechanics of New NanomaterialsPeter the Great St. Petersburg Polytechnic UniversitySaint PetersburgRussia
  2. 2.Department of Mathematics and MechanicsSt. Petersburg State UniversitySaint PetersburgRussia
  3. 3.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSaint PetersburgRussia

Personalised recommendations