Advertisement

Journal of Materials Science

, Volume 51, Issue 12, pp 6062–6074 | Cite as

The influence of slightly and highly soluble carbonate salts on phase relations in hydrated calcium aluminate cements

  • Guillermo Puerta-Falla
  • Magdalena Balonis
  • Gwenn Le Saout
  • Aditya Kumar
  • Melanie Rivera
  • Gabriel Falzone
  • Narayanan Neithalath
  • Gaurav SantEmail author
Original Paper

Abstract

The addition of slightly (CaCO3) and highly soluble (Na2CO3) carbonate salts is expected to favor the formation of carboaluminate phases in hydrated calcium aluminate cements (CACs). A multi-method approach including X-ray diffraction, thermogravimetric analysis, and thermodynamic calculations is applied to highlight that the “conversion phenomena” in CACs cannot be mitigated by the formation of carboaluminate phases (monocarboaluminate: Mc and hemicarboaluminate: Hc) which are anticipated to form following the addition of carbonate salts. Here, carboaluminate phase formation is shown to depend on three factors: (1) water availability, (2) carbonate content of the salts, and their ability to mobilize CO3 2− species in solution, and (3) lime content associated with the carbonate salt. The latter two factors are linked to the composition and solubility of the carbonate agent. It is concluded that limestone (CaCO3), despite being a source of calcium and carbonate species, contributes only slightly to carboaluminate phase formation due to its low solubility and slow dissolution rate. Soluble carbonate salts (Na2CO3) fail to boost carboaluminate phase formation as the availability of Ca2+ ions and water are limiting. Detailed thermodynamic calculations are used to elucidate conditions that affect the formation of carboaluminate phases.

Keywords

CaCO3 Ordinary Portland Cement Phase Assemblage Gehlenite Calcium Aluminate Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the financial support for this research provisioned by the University of California, Los Angeles (UCLA), and National Science Foundation (CMMI: 1066583). The authors also acknowledge the provision of materials by OMYA A.G. and Kerneos Aluminate Technologies. The contents of this paper reflect the views and opinions of the authors who are responsible for the accuracy of the datasets presented herein. This research was conducted in the Laboratory for the Chemistry of Construction Materials (LC2) and Molecular Instrumentation Center (MIC) at the University of California, Los Angeles (UCLA). As such, the authors gratefully acknowledge support that has made these laboratories and their operations possible.

References

  1. 1.
    De Weerdt K, Ben Haha M, Le Saout G et al (2011) Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem Concr Res 41(3):279–291CrossRefGoogle Scholar
  2. 2.
    Damidot D, Glasser FP (1995) Thermodynamic investigation of the CaO—Al2O3—CaSO4—CaCO3-H2O closed system at 25 °C and the influence of Na2O. Adv Cem Res 7(27):129–134CrossRefGoogle Scholar
  3. 3.
    Damidot D, Lothenbach B, Herfort D, Glasser FP (2011) Thermodynamics and cement science. Cem Concr Res 41(7):679–695CrossRefGoogle Scholar
  4. 4.
    Kumar A, Oey T, Kim S, Thomas D, Badran S, Li J, Fernandes F, Neithalath N, Sant G (2013) Simple methods to estimate the influence of limestone fillers on reaction and property evolution in cementitious materials. Cem Concr Compos 42:20–29CrossRefGoogle Scholar
  5. 5.
    Lothenbach B, Winnefeld F (2006) Thermodynamic modelling of the hydration of Portland cement. Cem Concr Res 36(2):209–226CrossRefGoogle Scholar
  6. 6.
    Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38(6):848–860CrossRefGoogle Scholar
  7. 7.
    Matschei T (2007) Thermodynamics of cement hydration PhD diss., Aberdeen University, AberdeenGoogle Scholar
  8. 8.
    Matschei T, Lothenbach B, Glasser FP (2007) The AFm phase in Portland cement. Cem Concr Res 37(2):118–130CrossRefGoogle Scholar
  9. 9.
    Oey T, Kumar A, Bullard JW, Neithalath N, Sant G (2013) The filler effect: the influence of filler content and surface area on cementitious reaction rates. J Am Ceram Soc 96(6):1978–1990CrossRefGoogle Scholar
  10. 10.
    Tomaž V, Tinta V, Gabrovšek, Kaučič V (2001) The effects of limestone addition, clinker type and fineness on properties of Portland cement. Cem Concr Res 31(1):135–139CrossRefGoogle Scholar
  11. 11.
    Tsivilis S, Chaniotakis E, Kakali G, Batis G (2002) An analysis of the properties of Portland limestone cements and concrete. Cem Concr Compos 24(3):371–378CrossRefGoogle Scholar
  12. 12.
    Puerta-Falla G, Balonis M, Le Saout G, Falzone G, Zhang C, Neithalath N, Sant G (2015) Elucidating the role of the aluminous source on limestone reactivity in cementitious materials. J Am Ceram Soc 98(12):4076–4089CrossRefGoogle Scholar
  13. 13.
    Falzone G, Balonis M, Sant G (2015) X-AFm stabilization as a mechanism of bypassing conversion phenomena in calcium aluminate cements. Cem Concr Res 72:54–68CrossRefGoogle Scholar
  14. 14.
    Lothenbach B, Pelletier-Chaignat L, Winnefeld F (2012) Stability in the system CaO–Al2O3–H2O. Cem Concr Res 42(12):1621–1634CrossRefGoogle Scholar
  15. 15.
    Scrivener KL, Capmas A (1998) Lea’s Chemistry of cement and concrete calcium aluminate cements, Chapter 13, In: Hewlett PC (ed), Wiley, New YorkGoogle Scholar
  16. 16.
    Scrivener KL, Cabiron JL, Letourneux R (1999) High-performance concretes from calcium aluminate cements. Cem Concr Res 29(8):1215–1223CrossRefGoogle Scholar
  17. 17.
    Puerta-Falla G, Kumar A, Gomez-Zamorano L, Bauchy M, Neithalath N, Sant G (2015) The influence of filler type and surface area on the hydration rates of calcium aluminate cement. Constr Build Mater 96:657–665CrossRefGoogle Scholar
  18. 18.
    Klaus SR, Neubauer J, Goetz-Neunhoeffer F (2013) Hydration kinetics of CA2 and CA—investigations performed on a synthetic calcium aluminate cement. Cem Concr Res 43:62–69CrossRefGoogle Scholar
  19. 19.
    Taylor HFW (1997) Cement Chemistry, 2nd edn. Thomas Telford, LondonCrossRefGoogle Scholar
  20. 20.
    Mangabhai RJ, Glasser FP (2001) Calcium Aluminate Cements. IOM communications, LondonGoogle Scholar
  21. 21.
    Shahwana R, Barnes P, Bensted J, Turrillas X (1994) Conversion of calcium aluminate cement hydrates re-examined with synchrotron energy-dispersive diffraction J Mater Sci lett 13(17):1232–1234Google Scholar
  22. 22.
    Ukrainczyk N, Šipušić J, Dabić P, Matusinović T (2008) Microcalorimetric study on calcium aluminate cement hydration. 13th International conference on materials, processes, friction and wear, p 382–388Google Scholar
  23. 23.
    Kuzel HJ (1996) Initial hydration reactions and mechanisms of delayed ettringite formation in Portland cements. Cem Concr Compos 18(3):195–203CrossRefGoogle Scholar
  24. 24.
    Luz AP, Pandolfelli VC (2012) CaCO3 addition effect on the hydration and mechanical strength evolution of calcium aluminate cement for endodontic applications. Ceram Int 38(2):1417–1425CrossRefGoogle Scholar
  25. 25.
    ASTM (International and American Society for Testing & Materials) (2004) Annual book of ASTM standards, American Society for Testing & Materials, USAGoogle Scholar
  26. 26.
    National Center for Biotechnology Information (NCBI)—PubChem database. Available at https://www.ncbi.nlm.nih.gov/pccompound. Accessed 10 Dec 2015
  27. 27.
    FIZ/NIST—Inorganic crystal structure database (ICSD) (version 2009/1). Available for purchase at http://www.nist.gov/srd/nist84.cfm
  28. 28.
    Mineralogical Society of America—American mineralogist crystal structure database. Available at http://rruff.geo.arizona.edu/AMS/amcsd.php. Accessed 15 Jan 2015
  29. 29.
    Le Saout G, Kocaba V, Scrivener KL (2011) Application of the Rietveld method to the analysis of anhydrous cement. Cem Concr Res 41:133–148CrossRefGoogle Scholar
  30. 30.
    Kulik D (2013) GEMS-PSI 2.1. Available at http://les.web.psi.ch/Software/GEMS-PSI/. Accessed 18 June 2013
  31. 31.
    Myers RJ, Lothenbach B, Bernal SA, Provis JL (2015) Thermodynamic modelling of alkali-activated slag cements. Appl Geochem 61:233–247CrossRefGoogle Scholar
  32. 32.
    Martin LHJ, Winnefeld F, Müller CJ, Lothenbach B (2015) Contribution of limestone to the hydration of calcium sulfoaluminate cement. Cem Concr Compos 62:204–211CrossRefGoogle Scholar
  33. 33.
    Thomas JJ, Jennings HM (1998) Free-energy-based model of chemical equilibria in the CaO–SiO2-H2O system. J Am Ceram Soc 81(3):606–612CrossRefGoogle Scholar
  34. 34.
    Paul Scherrer Institute—GEMS: Gibbs free energy software for geochemical modeling. Available at http://gems.web.psi.ch/. Accessed 18 June 2015
  35. 35.
    Lothenbach B—CEMDATA. Available at http://www.empa.ch/web/s308/cemdata. Accessed 18 June 2014
  36. 36.
    Haha MB, Lothenbach B, Le Saout G, Winnefeld F (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: effect of Al2O3. Cem Concr Res 42(1):74–83CrossRefGoogle Scholar
  37. 37.
    Pelletier-Chaignat L, Winnefeld F, Lothenbach B, Müller CJ (2012) Beneficial use of limestone filler with calcium sulphoaluminate cement . Constr Build Mater 26(1):619–627CrossRefGoogle Scholar
  38. 38.
    Geoscience for a sustainable earth—Mineral species data base. Available at http://thermoddem.brgm.fr/data/mineraux.php. Accessed on 15 Jan 2015
  39. 39.
    Önder K, Yaman IO, Tokyay M (2013) Compressive strength development of calcium aluminate cement–GGBFS blends. Cem Concr Compos 35(1):163–170CrossRefGoogle Scholar
  40. 40.
    Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38(6):848–860CrossRefGoogle Scholar
  41. 41.
    Johnson DR, Robb WA (1973) Gaylussite: thermal properties by simultaneous thermal analysis. Am Mineral 58:778–784Google Scholar
  42. 42.
    Hartmant M, Trnka O, Vesely V, Karel Svodoba (2001) Thermal dehydration of the sodium carbonate hydrates. Chem Eng Commun 185(1):1–16CrossRefGoogle Scholar
  43. 43.
    Steudel A, Mehl D, Emmerich K (2013) Simultaneous thermal analysis of different bentonite–sodium carbonate systems: an attempt to distinguish alkali-activated bentonites from raw materials. Clay Miner 48(1):117–128CrossRefGoogle Scholar
  44. 44.
    Matschei T, Lothenbach B, Glasser FP (2007) The role of calcium carbonate in cement hydration. Cem Concr Res 37(4):551–558CrossRefGoogle Scholar
  45. 45.
    Baquerizo LG, Matschei T, Scrivener KL, Saeidpour M, Wadsö L (2015) Hydration states of AFm cement phases. Cem Concr Res 73:143–157CrossRefGoogle Scholar
  46. 46.
    Baquerizo LG (2015) Impact of water activity on the mineralogy of hydrated cement Ph.D. diss. École Polytechnique Fédérale de Lausanne, LausanneGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Guillermo Puerta-Falla
    • 1
  • Magdalena Balonis
    • 2
    • 3
  • Gwenn Le Saout
    • 4
  • Aditya Kumar
    • 1
  • Melanie Rivera
    • 1
  • Gabriel Falzone
    • 1
  • Narayanan Neithalath
    • 5
  • Gaurav Sant
    • 1
    • 6
    Email author
  1. 1.Laboratory for the Chemistry of Construction Materials, Department of Civil and Environmental EngineeringUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  3. 3.Institute for Technology AdvancementUniversity of CaliforniaLos AngelesUSA
  4. 4.Centre des Matériaux de l’École des Mines d’Alès (C2MA)École des mines d’AlèsAlèsFrance
  5. 5.School of Sustainable Engineering and the Built Environment (SSBE)Arizona State UniversityTempeUSA
  6. 6.California Nanosystems Institute (CNSI)University of CaliforniaLos AngelesUSA

Personalised recommendations